1
|
Baude JK, Mottaghy FM, Derlin T, Fischer A, Heinzel A, Bucerius J. PSMA - Targeted Clinical Molecular Imaging of Atherosclerosis: Correlation with Cardiovascular Risk Factors. Nuklearmedizin 2024. [PMID: 39638325 DOI: 10.1055/a-2390-2829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
AIM The early diagnosis of atherosclerotic changes to prevent ischemic events represents a clinical challenge.Prostate-specific membrane antigen (PSMA) as an established diagnostic in the field of prostate cancer also appears to detect neovascularization and inflammation in other diseases. We hypothesized that it might be also suited for detection of inflammation in atherosclerosis. METHODS We analyzed data of 78 prostate cancer patients who received a PSMA ligand PET/CT for re-staging. The cardiovascular risk factors (CVRF) of each patient were documented. Target-to-background-ratios (TBR) were calculated from the individual uptake values for three different sections of thoracic aorta [ascending (AA) and descending aorta (AD), aortic arch (AoAC)]. Statistical analyses included a linear regression analysis with the PSMA ligand uptake values of the different arterial segments versus different CVRF as independent variables. RESULTS The meanTBRmax was measured highest in the AoAC (1.66 ± 0.33) compared to both other vessel sections (AA: 1.46 ± 0.21, p=0.001; AD: 1.59 ± 0.41, p=0.371). There was a correlation between the PSMA ligand uptake in all measured segments of the aorta and BMI, but only a significant correlation in the ascending aorta (r=0.347, p=0.001). This was confirmed in a subgroup analysis, which showed significantly higher uptake values in preadiposity (BMI >25) and obesity (BMI >30) patients in the ascending aorta (p=0.048). CONCLUSION PSMA ligand uptake in the ascending aorta was linked to BMI. PET detection of vascular PSMA ligand uptake may be indicative of vessel wall inflammation to some extent. However, PSMA ligands appear to be less suitable than other tracers for this purpose, given their absent correlation with most established CVRFs.
Collapse
Affiliation(s)
- Julia K Baude
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Alexander Fischer
- Philips GmbH Innovative Technologies, Research Laboratories, Aachen, Germany
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital, Martin-Luther-Universität, Halle-Wittenberg, Halle, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan Bucerius
- Department of Nuclear Medicine, University Medicine Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| |
Collapse
|
2
|
Bakht MK, Beltran H. Biological determinants of PSMA expression, regulation and heterogeneity in prostate cancer. Nat Rev Urol 2024:10.1038/s41585-024-00900-z. [PMID: 38977769 DOI: 10.1038/s41585-024-00900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/10/2024]
Abstract
Prostate-specific membrane antigen (PSMA) is an important cell-surface imaging biomarker and therapeutic target in prostate cancer. The PSMA-targeted theranostic 177Lu-PSMA-617 was approved in 2022 for men with PSMA-PET-positive metastatic castration-resistant prostate cancer. However, not all patients respond to PSMA-radioligand therapy, in part owing to the heterogeneity of PSMA expression in the tumour. The PSMA regulatory network is composed of a PSMA transcription complex, an upstream enhancer that loops to the FOLH1 (PSMA) gene promoter, intergenic enhancers and differentially methylated regions. Our understanding of the PSMA regulatory network and the mechanisms underlying PSMA suppression is evolving. Clinically, molecular imaging provides a unique window into PSMA dynamics that occur on therapy and with disease progression, although challenges arise owing to the limited resolution of PET. PSMA regulation and heterogeneity - including intertumoural and inter-patient heterogeneity, temporal changes, lineage dynamics and the tumour microenvironment - affect PSMA theranostics. PSMA response and resistance to radioligand therapy are mediated by a number of potential mechanisms, and complementary biomarkers beyond PSMA are under development. Understanding the biological determinants of cell surface target regulation and heterogeneity can inform precision medicine approaches to PSMA theranostics as well as other emerging therapies.
Collapse
Affiliation(s)
- Martin K Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Lehman VT, Tiegs-Heiden CA, Broski SM. Beyond Anatomy: Fat-Suppressed MR and Molecular Imaging of Spinal Pain Generators. Radiol Clin North Am 2024; 62:247-261. [PMID: 38272618 DOI: 10.1016/j.rcl.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Spine pain is highly prevalent and costly, but evaluation with clinical features and anatomic imaging remain limited. Fat-suppressed MR imaging and molecular imaging (MI) may help identify inflammatory, lesional, and malignant causes. Numerous MI agents are available, each with advantages and disadvantages. Herein, FDG PET, prostate-specific membrane antigen (PSMA), bone radiotracers, and others are highlighted. No specific pain MI agents have been identified, but mechanisms of key agents are shown in video format, and the mechanism of PSMA as a theranostic agent is displayed. A multidisciplinary approach is needed to master this topic.
Collapse
Affiliation(s)
- Vance T Lehman
- Department of Radiology, Mayo Clinic, 200 1st Street SouthWest, Rochester, MN 55905, USA.
| | | | - Stephen M Broski
- Department of Radiology, Mayo Clinic, 200 1st Street SouthWest, Rochester, MN 55905, USA
| |
Collapse
|
4
|
McKone EL, Sutton EA, Johnson GB, Phillips RM. Application of Advanced Imaging to Prostate Cancer Diagnosis and Management: A Narrative Review of Current Practice and Unanswered Questions. J Clin Med 2024; 13:446. [PMID: 38256579 PMCID: PMC10816977 DOI: 10.3390/jcm13020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Major advances in prostate cancer diagnosis, staging, and management have occurred over the past decade, largely due to our improved understanding of the technical aspects and clinical applications of advanced imaging, specifically magnetic resonance imaging (MRI) and prostate-cancer-specific positron emission tomography (PET). Herein, we review the established utility of these important and exciting technologies, as well as areas of controversy and uncertainty that remain important areas for future study. There is strong evidence supporting the utility of MRI in guiding initial biopsy and assessing local disease. There is debate, however, regarding how to best use the imaging modality in risk stratification, treatment planning, and assessment of biochemical failure. Prostate-cancer-specific PET is a relatively new technology that provides great value to the evaluation of newly diagnosed, treated, and recurrent prostate cancer. However, its ideal use in treatment decision making, staging, recurrence detection, and surveillance necessitates further research. Continued study of both imaging modalities will allow for an improved understanding of their best utilization in improving cancer care.
Collapse
Affiliation(s)
| | - Elsa A. Sutton
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Geoffrey B. Johnson
- Department of Radiology, Nuclear Medicine Division, Mayo Clinic, Rochester, MN 55905, USA
| | - Ryan M. Phillips
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Huang R, Li Y, Wu H, Liu B, Zhang X, Zhang Z. 68Ga-PSMA-11 PET/CT versus 68Ga-PSMA-11 PET/MRI for the detection of biochemically recurrent prostate cancer: a systematic review and meta-analysis. Front Oncol 2023; 13:1216894. [PMID: 37645433 PMCID: PMC10461474 DOI: 10.3389/fonc.2023.1216894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Purpose Our aim was to conduct a meta-analysis and systematic review in order to compare the diagnostic efficacy of 68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI in patients with biochemically recurrent after radical prostatectomy and biochemically recurrent prostate cancers (BCR) after hybrid RT and RP. Methods Up until February 2023, we searched PubMed, Embase, and Web of Science for pertinent papers. Studies examining the utility of 68Ga-PSMA-11 PET/CT or PET/MRI as a screening tool for biochemically recurrent prostate cancer were included. To measure heterogeneity, we employed the I2 statistic. In cases of substantial heterogeneity (I2 > 50%), we used the random effect model to produce a forest plot. In other cases, we utilized the fixed model. Furthermore, we assessed the quality of the studies included using the Quality Assessment of Diagnostic Performance Studies (QUADAS-2) method. Results In total, 37 studies involving 8409 patients were examined. For 68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI, the combined total detection rate was 0.70 (95% CI: 0.65-0.75) and 0.71 (95% CI:0.67-0.75), respectively. 68Ga-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/MRI did not substantially differ in terms of the overall detection rate for BCR (P = 0.58). The detection rate was unaffected by the PSA values (all P > 0.05). Conclusion The diagnostic efficacy of 68Ga-PSMA-11 PET/CT appears to be equivalent to that of 68Ga-PSMA-11 PET/MRI in detecting biochemically recurrent prostate cancer. Nonetheless, it should be noted that not all studies have used pathological biopsies as the gold standard. Therefore, additional larger prospective studies are needed to address this issue. Systematic review registration identifier CRD42023410039.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongxi Zhang
- The First Clinical College, Changsha Medical University, Changsha, China
| |
Collapse
|
6
|
Abstract
More than 40% of men with intermediate-risk or high-risk prostate cancer will experience a biochemical recurrence after radical prostatectomy. Clinical guidelines for the management of these patients largely focus on the use of salvage radiotherapy with or without systemic therapy. However, not all patients with biochemical recurrence will go on to develop metastases or die from their disease. The optimal pre-salvage therapy investigational workup for patients who experience biochemical recurrence should, therefore, include novel techniques such as PET imaging and genomic analysis of radical prostatectomy specimen tissue, as well as consideration of more traditional clinical variables such as PSA value, PSA kinetics, Gleason score and pathological stage of disease. In patients without metastatic disease, the only known curative intervention is salvage radiotherapy but, given the therapeutic burden of this treatment, importance must be placed on accurate timing of treatment, radiation dose, fractionation and field size. Systemic therapy also has a role in the salvage setting, both concurrently with radiotherapy and as salvage monotherapy.
Collapse
|
7
|
Moradi F, Farolfi A, Fanti S, Iagaru A. Prostate cancer: Molecular imaging and MRI. Eur J Radiol 2021; 143:109893. [PMID: 34391061 DOI: 10.1016/j.ejrad.2021.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
The role of molecular imaging in initial evaluation of men with presumed or established diagnosis of prostate cancer and work up of biochemical recurrence and metastatic disease is rapidly evolving due to superior diagnostic performance compared to anatomic imaging. However, variable tumor biology and expression of transmembrane proteins or metabolic alterations poses a challenge. We review the evidence and controversies with emphasis on emerging PET radiopharmaceuticals and experience on clinical utility of PET/CT and PET/MRI in diagnosis and management of prostate cancer.
Collapse
Affiliation(s)
- Farshad Moradi
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA, USA.
| | - Andrea Farolfi
- Nuclear Medicine Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Ng TSC, Gao X, Salari K, Zlatev DV, Heidari P, Kamran SC. Incorporating PSMA-Targeting Theranostics Into Personalized Prostate Cancer Treatment: a Multidisciplinary Perspective. Front Oncol 2021; 11:722277. [PMID: 34395293 PMCID: PMC8355555 DOI: 10.3389/fonc.2021.722277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023] Open
Abstract
Recent developments in prostate-specific membrane antigen (PSMA) targeted diagnostic imaging and therapeutics (theranostics) promise to advance the management of primary, biochemically recurrent, and metastatic prostate cancer. In order to maximize the clinical impact of PSMA-targeted theranostics, a coordinated approach between the clinical stakeholders involved in prostate cancer management is required. Here, we present a vision for multidisciplinary use of PSMA theranostics from the viewpoints of nuclear radiology, medical oncology, urology, and radiation oncology. We review the currently available and forthcoming PSMA-based imaging and therapeutics and examine current and potential impacts on prostate cancer management from early localized disease to advanced treatment-refractory disease. Finally, we highlight the clinical and research opportunities related to PSMA-targeted theranostics and describe the importance of multidisciplinary collaboration in this space.
Collapse
Affiliation(s)
- Thomas S C Ng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xin Gao
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Keyan Salari
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Dimitar V Zlatev
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Pedram Heidari
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Hyväkkä A, Virtanen V, Kemppainen J, Grönroos TJ, Minn H, Sundvall M. More Than Meets the Eye: Scientific Rationale behind Molecular Imaging and Therapeutic Targeting of Prostate-Specific Membrane Antigen (PSMA) in Metastatic Prostate Cancer and Beyond. Cancers (Basel) 2021; 13:cancers13092244. [PMID: 34067046 PMCID: PMC8125679 DOI: 10.3390/cancers13092244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Prostate-specific membrane antigen (PSMA) is a transmembrane protein that is overexpressed in prostate cancer and correlates with the aggressiveness of the disease. PSMA is a promising target for imaging and therapeutics in prostate cancer patients validated in prospective trials. However, the role of PSMA in prostate cancer progression is poorly understood. In this review, we discuss the biology and scientific rationale behind the use of PSMA and other targets in the detection and theranostics of metastatic prostate cancer. Abstract Prostate cancer is the second most common cancer type in men globally. Although the prognosis for localized prostate cancer is good, no curative treatments are available for metastatic disease. Better diagnostic methods could help target therapies and improve the outcome. Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein that is overexpressed on malignant prostate tumor cells and correlates with the aggressiveness of the disease. PSMA is a clinically validated target for positron emission tomography (PET) imaging-based diagnostics in prostate cancer, and during recent years several therapeutics have been developed based on PSMA expression and activity. The expression of PSMA in prostate cancer can be very heterogeneous and some metastases are negative for PSMA. Determinants that dictate clinical responses to PSMA-targeting therapeutics are not well known. Moreover, it is not clear how to manipulate PSMA expression for therapeutic purposes and develop rational treatment combinations. A deeper understanding of the biology behind the use of PSMA would help the development of theranostics with radiolabeled compounds and other PSMA-based therapeutic approaches. Along with PSMA several other targets have also been evaluated or are currently under investigation in preclinical or clinical settings in prostate cancer. Here we critically elaborate the biology and scientific rationale behind the use of PSMA and other targets in the detection and therapeutic targeting of metastatic prostate cancer.
Collapse
Affiliation(s)
- Anniina Hyväkkä
- Institute of Biomedicine, Cancer Research Unit, FICAN West Cancer Center Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (A.H.); (V.V.)
| | - Verneri Virtanen
- Institute of Biomedicine, Cancer Research Unit, FICAN West Cancer Center Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (A.H.); (V.V.)
- Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, FI-20520 Turku, Finland
| | - Jukka Kemppainen
- Turku PET Centre, University of Turku, FI-20521 Turku, Finland;
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, FI-20521 Turku, Finland
- Docrates Cancer Center, FI-00180 Helsinki, Finland
| | - Tove J. Grönroos
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, FI-20520 Turku, Finland;
| | - Heikki Minn
- Department of Oncology, FICAN West Cancer Center, University of Turku and Turku University Hospital, FI-20521 Turku, Finland;
| | - Maria Sundvall
- Institute of Biomedicine, Cancer Research Unit, FICAN West Cancer Center Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (A.H.); (V.V.)
- Department of Oncology, FICAN West Cancer Center, University of Turku and Turku University Hospital, FI-20521 Turku, Finland;
- Correspondence:
| |
Collapse
|
10
|
Intra-individual dynamic comparison of 18F-PSMA-11 and 68Ga-PSMA-11 in LNCaP xenograft bearing mice. Sci Rep 2020; 10:21068. [PMID: 33273603 PMCID: PMC7713063 DOI: 10.1038/s41598-020-78273-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
Recently, a 18F-labeled derivative of the widely used 68Ga-PSMA-11 was developed for PET imaging of prostate cancer. Although 18F-PSMA-11 has already been evaluated in a Phase I and Phase II clinical trial, preclinical evaluation of this radiotracer is important for further understanding its dynamic behavior. Saturation binding experiments were conducted by incubation of LNCaP cells with 18F-PSMA-11 or 68Ga-PSMA-11 for 1 h, followed by determination of the specific and aspecific binding. Mice bearing LNCaP or PC-3 xenografts each received ± 3.7 MBq 18F-PSMA-11 and 68Ga-PSMA-11 followed by dynamic acquisition of 2.5 h as well as ± 15 MBq 18F-FDG followed by static acquisition at 1 h post injection (p.i.). Uptake was evaluated by comparison of uptake parameters (SUVmean, SUVmax, TBRmean and TBRmax). Mice underwent ex vivo biodistribution where 18F-PSMA-11 activity was measures in excretory organs (kidneys, bladder and liver) as well as bone fragments (femur, humerus, sternum and skull) to evaluate bone uptake. The dissociation constant (Kd) of 18F-PSMA-11 and 68Ga-PSMA-11 was 2.95 ± 0.87 nM and 0.49 ± 0.20 nM, respectively. Uptake parameters were significantly higher in LNCaP compared to PC-3 xenografts for both 18F-PSMA-11 and 68Ga-PSMA-11, while no difference was found for 18F-FDG uptake (except for SUVmax). Tumor uptake of 18F-PSMA-11 showed a similar trend over time as 68Ga-PSMA-11, although all uptake parameter curves of the latter were considerably lower. When comparing early (60 min p.i.) to delayed (150 min p.i.) imaging for both radiotracers individually, TBRmean and TBRmax were significantly higher at the later timepoint, as well as the SUVmax of 68Ga-PSMA-11. The highest %ID/g was determined in the kidneys (94.0 ± 13.6%ID/g 1 h p.i.) and the bladder (6.48 ± 2.18%ID/g 1 h p.i.). No significant increase in bone uptake was seen between 1 and 2 h p.i. Both radiotracers showed high affinity for the PSMA receptor. Over time, all uptake parameters were higher for 18F-PSMA-11 compared to 68Ga-PSMA-11. Delayed imaging with the latter may improve tumor visualization, while no additional benefits could be found for late 18F-PSMA-11 imaging. Ex vivo biodistribution demonstrated fast renal clearance of 18F-PSMA-11 as well as no significant increase in bone uptake.
Collapse
|
11
|
Salvage Pelvic Lymph Node Dissection and Current State of Imaging for Recurrent Prostate Cancer: Does a Standard Exist? Curr Urol Rep 2020; 21:62. [PMID: 33159608 DOI: 10.1007/s11934-020-01011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW We aim to evaluate the efficacy of salvage lymph node dissection (SLND) for nodal recurrent prostate cancer after primary treatment. We also provide a review of the diagnostic performance of next-generation sequencing (next-generation imaging (NGI)) radiotracers in the salvage setting. RECENT FINDINGS Most studies evaluating SLND include a heterogeneous population with a small sample size and are retrospective in design. The 5-year clinical recurrence-free and cancer-specific survival following SLND are 26-52% and 57-89%, respectively, among prospective studies. NGI improves accuracy in detecting nodal recurrence compared to conventional CT, with PMSA PET-CT showing the most promise. However, limited studies exist comparing imaging modalities and performance is variable at low PSA values. SLND is a promising treatment option, but more prospective data are needed to determine the ideal surgical candidate and long-term oncologic outcomes. More studies comparing different NGI are needed to determine the best imaging modality in patients who may be candidates for salvage treatment.
Collapse
|