1
|
Cervone M, Hugonnard M, Bourdoiseau G, Chabanne L, Krafft E, Cadoré JL. Clinical and Diagnostic Findings in Dogs Infected with Trichuris vulpis: A Retrospective Study. Vet Sci 2024; 11:306. [PMID: 39057990 PMCID: PMC11281514 DOI: 10.3390/vetsci11070306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Trichuris vulpis is a parasite of the large intestine of canids and has a global distribution. Despite its well-established epidemiology, the question of its pathogenicity in dogs remains debated. It has been suggested that younger age and concurrent infection with Ancylostoma caninum may be responsible for more severe clinical presentations. This retrospective study aimed to describe the clinical and diagnostic features of T. vulpis-infected dogs and to compare these findings with dogs infected with both T. vulpis and other intestinal parasites (poly-infected dogs). Forty-five dogs were included, with twenty-five being solely infected by T. vulpis and twenty poly-infected dogs. Only weight loss was more frequent (p = 0.006) in poly-infected dogs compared to T. vulpis mono-infected dogs. No significant differences were observed in laboratory abnormalities between mono-infected and poly-infected dogs. Only diarrhea was more frequent (p = 0.007) in younger dogs compared to adults. The egg shedding pattern was significantly higher (p = 0.04) among adult dogs compared to young ones, and there was a significant positive correlation between egg shedding and age (r = 0.41; p = 0.005). These findings suggest that T. vulpis might be responsible for both clinical signs and laboratory abnormalities in dogs, irrespective of the host's age and the presence of other intestinal parasites.
Collapse
Affiliation(s)
- Mario Cervone
- Département des Animaux de Compagnie, de Loisir et de Sport, Campus Vétérinaire de Lyon, Université de Lyon, VetAgro Sup, 1 Av. Bourgelat, 69280 Marcy L’Etoile, France; (M.H.)
| | - Marine Hugonnard
- Département des Animaux de Compagnie, de Loisir et de Sport, Campus Vétérinaire de Lyon, Université de Lyon, VetAgro Sup, 1 Av. Bourgelat, 69280 Marcy L’Etoile, France; (M.H.)
| | - Gilles Bourdoiseau
- Département des Animaux de Compagnie, de Loisir et de Sport, Campus Vétérinaire de Lyon, Université de Lyon, VetAgro Sup, 1 Av. Bourgelat, 69280 Marcy L’Etoile, France; (M.H.)
- Département Elevage et Santé Publique, Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, 69280 Marcy L’Etoile, France
| | - Luc Chabanne
- Département des Animaux de Compagnie, de Loisir et de Sport, Campus Vétérinaire de Lyon, Université de Lyon, VetAgro Sup, 1 Av. Bourgelat, 69280 Marcy L’Etoile, France; (M.H.)
| | - Emilie Krafft
- Département des Animaux de Compagnie, de Loisir et de Sport, Campus Vétérinaire de Lyon, Université de Lyon, VetAgro Sup, 1 Av. Bourgelat, 69280 Marcy L’Etoile, France; (M.H.)
| | - Jean-Luc Cadoré
- Département des Animaux de Compagnie, de Loisir et de Sport, Campus Vétérinaire de Lyon, Université de Lyon, VetAgro Sup, 1 Av. Bourgelat, 69280 Marcy L’Etoile, France; (M.H.)
| |
Collapse
|
2
|
Adams JRG, Pooranachithra M, Jyo EM, Zheng SL, Goncharov A, Crew JR, Kramer JM, Jin Y, Ernst AM, Chisholm AD. Nanoscale patterning of collagens in C. elegans apical extracellular matrix. Nat Commun 2023; 14:7506. [PMID: 37980413 PMCID: PMC10657453 DOI: 10.1038/s41467-023-43058-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
Apical extracellular matrices (aECMs) are complex extracellular compartments that form important interfaces between animals and their environment. In the adult C. elegans cuticle, layers are connected by regularly spaced columnar structures known as struts. Defects in struts result in swelling of the fluid-filled medial cuticle layer ('blistering', Bli). Here we show that three cuticle collagens BLI-1, BLI-2, and BLI-6, play key roles in struts. BLI-1 and BLI-2 are essential for strut formation whereas activating mutations in BLI-6 disrupt strut formation. BLI-1, BLI-2, and BLI-6 precisely colocalize to arrays of puncta in the adult cuticle, corresponding to struts, initially deposited in diffuse stripes adjacent to cuticle furrows. They eventually exhibit tube-like morphology, with the basal ends of BLI-containing struts contact regularly spaced holes in the cuticle. Genetic interaction studies indicate that BLI strut patterning involves interactions with other cuticle components. Our results reveal strut formation as a tractable example of precise aECM patterning at the nanoscale.
Collapse
Affiliation(s)
- Jennifer R G Adams
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Erin M Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sherry Li Zheng
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alexandr Goncharov
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jennifer R Crew
- Northwestern University School of Medicine, Department of Cell and Molecular Biology, Chicago, IL, 60611, USA
| | - James M Kramer
- Northwestern University School of Medicine, Department of Cell and Molecular Biology, Chicago, IL, 60611, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andreas M Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrew D Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Hubbard IC, Thompson JS, Else KJ, Shears RK. Another decade of Trichuris muris research: An update and application of key discoveries. ADVANCES IN PARASITOLOGY 2023; 121:1-63. [PMID: 37474238 DOI: 10.1016/bs.apar.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The mouse whipworm, Trichuris muris, has been used for over 60 years as a tractable model for human trichuriasis, caused by the related whipworm species, T. trichiura. The history of T. muris research, from the discovery of the parasite in 1761 to understanding the lifecycle and outcome of infection with different doses (high versus low dose infection), as well as the immune mechanisms associated with parasite expulsion and chronic infection have been detailed in an earlier review published in 2013. Here, we review recent advances in our understanding of whipworm biology, host-parasite interactions and basic immunology brought about using the T. muris mouse model, focussing on developments from the last decade. In addition to the traditional high/low dose infection models that have formed the mainstay of T. muris research to date, novel models involving trickle (repeated low dose) infection in laboratory mice or infection in wild or semi-wild mice have led to important insights into how immunity develops in situ in a multivariate environment, while the use of novel techniques such as the development of caecal organoids (enabling the study of larval development ex vivo) promise to deliver important insights into host-parasite interactions. In addition, the genome and transcriptome analyses of T. muris and T. trichiura have proven to be invaluable tools, particularly in the context of vaccine development and identification of secreted products including proteins, extracellular vesicles and micro-RNAs, shedding further light on how these parasites communicate with their host and modulate the immune response to promote their own survival.
Collapse
Affiliation(s)
- Isabella C Hubbard
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jacob S Thompson
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kathryn J Else
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebecca K Shears
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.
| |
Collapse
|
4
|
Duque-Correa MA, Goulding D, Rodgers FH, Gillis JA, Cormie C, Rawlinson KA, Bancroft AJ, Bennett HM, Lotkowska ME, Reid AJ, Speak AO, Scott P, Redshaw N, Tolley C, McCarthy C, Brandt C, Sharpe C, Ridley C, Moya JG, Carneiro CM, Starborg T, Hayes KS, Holroyd N, Sanders M, Thornton DJ, Grencis RK, Berriman M. Defining the early stages of intestinal colonisation by whipworms. Nat Commun 2022; 13:1725. [PMID: 35365634 PMCID: PMC8976045 DOI: 10.1038/s41467-022-29334-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/08/2022] [Indexed: 01/08/2023] Open
Abstract
Whipworms are large metazoan parasites that inhabit multi-intracellular epithelial tunnels in the large intestine of their hosts, causing chronic disease in humans and other mammals. How first-stage larvae invade host epithelia and establish infection remains unclear. Here we investigate early infection events using both Trichuris muris infections of mice and murine caecaloids, the first in-vitro system for whipworm infection and organoid model for live helminths. We show that larvae degrade mucus layers to access epithelial cells. In early syncytial tunnels, larvae are completely intracellular, woven through multiple live dividing cells. Using single-cell RNA sequencing of infected mouse caecum, we reveal that progression of infection results in cell damage and an expansion of enterocytes expressing of Isg15, potentially instigating the host immune response to the whipworm and tissue repair. Our results unravel intestinal epithelium invasion by whipworms and reveal specific host-parasite interactions that allow the whipworm to establish its multi-intracellular niche.
Collapse
Affiliation(s)
- María A Duque-Correa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, CB2 0AW, UK.
| | - David Goulding
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Faye H Rodgers
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Mogrify Ltd, 25 Cambridge Science Park, Milton Road, Cambridge, CB4 0FW, UK
| | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Claire Cormie
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Kate A Rawlinson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Allison J Bancroft
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Hayley M Bennett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Magda E Lotkowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Adam J Reid
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Anneliese O Speak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Paul Scott
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nicholas Redshaw
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Charlotte Tolley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Catherine McCarthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Cordelia Brandt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Catherine Sharpe
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- InstilBio, UMIC Bio-Incubator, Manchester, M13 9XX, UK
| | - Caroline Ridley
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Prime Global Medical Communications, Knutsford, WA16 8GP, UK
| | - Judit Gali Moya
- Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Claudia M Carneiro
- Immunopathology Laboratory, NUPEB, Federal University of Ouro Preto, Campus Universitario Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Tobias Starborg
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, UK
| | - Kelly S Hayes
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Mandy Sanders
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - David J Thornton
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Richard K Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
| |
Collapse
|
5
|
Skaar EP. Imaging Infection Across Scales of Size: From Whole Animals to Single Molecules. Annu Rev Microbiol 2021; 75:407-426. [PMID: 34343016 DOI: 10.1146/annurev-micro-041521-121457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infectious diseases are a leading cause of global morbidity and mortality, and the threat of infectious diseases to human health is steadily increasing as new diseases emerge, existing diseases reemerge, and antimicrobial resistance expands. The application of imaging technology to the study of infection biology has the potential to uncover new factors that are critical to the outcome of host-pathogen interactions and to lead to innovations in diagnosis and treatment of infectious diseases. This article reviews current and future opportunities for the application of imaging to the study of infectious diseases, with a particular focus on the power of imaging objects across a broad range of sizes to expand the utility of these approaches. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eric P Skaar
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| |
Collapse
|
6
|
O'Sullivan JDB, Cruickshank SM, Withers PJ, Else KJ. Morphological variability in the mucosal attachment site of Trichuris muris revealed by X-ray microcomputed tomography. Int J Parasitol 2021; 51:797-807. [PMID: 34216623 DOI: 10.1016/j.ijpara.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022]
Abstract
Parasitic infections can be challenging to study because two dimensional light and electron microscopy are often limited in visualising complex and inaccessible attachment sites. Exemplifying this, Trichuris spp. inhabit a tunnel of epithelial cells within the host caecum and colon. A significant global burden of this infection persists, partly because available anthelminthics lack efficacy, although the mechanisms underlying this remain unknown. Consequently, there is a need to pioneer new approaches to better characterize the parasite niche within the host and investigate how variation in its morphology and integrity may contribute to resistance to therapeutic intervention. To address these aims, we exploited three-dimensional X-ray micro-computed tomography (microCT) to image the mouse whipworm, Trichuris muris, in caeca of wild-type C57BL/6 and SCID mice ex vivo. Using osmium tetroxide staining to effectively enhance the contrast of worms, we found that a subset exhibited preferential positioning towards the bases of the intestinal crypts. Moreover, in one rare event, we demonstrated whipworm traversal of the lamina propria. This morphological variability contradicts widely accepted conclusions from conventional microscopy of the parasite niche, showing Trichuris in close contact with the host proliferative and immune compartments that may facilitate immunomodulation. Furthermore, by using a skeletonization-based approach we demonstrate considerable variation in tunnel length and integrity. The qualitative and quantitative observations provide a new morphological point of reference for future in vitro study of host-Trichuris interactions, and highlight the potential of microCT to characterise enigmatic host-parasite interactions more accurately.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Henry Royce Institute, Department of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom; Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Oxford Road, M13 9PT, United Kingdom
| | - Sheena M Cruickshank
- Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Oxford Road, M13 9PT, United Kingdom
| | - Philip J Withers
- Henry Royce Institute, Department of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Kathryn J Else
- Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Oxford Road, M13 9PT, United Kingdom.
| |
Collapse
|
7
|
Mitchell RL, Davies P, Kenrick P, Volkenandt T, Pleydell-Pearce C, Johnston R. Correlative Microscopy: a tool for understanding soil weathering in modern analogues of early terrestrial biospheres. Sci Rep 2021; 11:12736. [PMID: 34140576 PMCID: PMC8211647 DOI: 10.1038/s41598-021-92184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Correlative imaging provides a method of investigating complex systems by combining analytical (chemistry) and imaging (tomography) information across dimensions (2D-3D) and scales (centimetres-nanometres). We studied weathering processes in a modern cryptogamic ground cover from Iceland, containing early colonizing, and evolutionary ancient, communities of mosses, lichens, fungi, and bacteria. Targeted multi-scale X-ray Microscopy of a grain in-situ within a soil core revealed networks of surficial and internal features (tunnels) originating from organic-rich surface holes. Further targeted 2D grain characterisation by optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (SEM-EDS), following an intermediate manual correlative preparation step, revealed Fe-rich nodules within the tunnels. Finally, nanotomographic imaging by focussed ion beam microscopy (FIB-SEM) revealed coccoid and filamentous-like structures within subsurface tunnels, as well as accumulations of Fe and S in grain surface crusts, which may represent a biological rock varnish/glaze. We attribute these features to biological processes. This work highlights the advantages and novelty of the correlative imaging approach, across scales, dimensions, and modes, to investigate biological weathering processes. Further, we demonstrate correlative microscopy as a means of identifying fingerprints of biological communities, which could be used in the geologic rock record and on extra-terrestrial bodies.
Collapse
Affiliation(s)
- R. L. Mitchell
- grid.4827.90000 0001 0658 8800Advanced Imaging of Materials (AIM) Facility, College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN UK ,grid.35937.3b0000 0001 2270 9879Earth Sciences Department, The Natural History Museum, Cromwell Road, London, SW7 5BD UK ,grid.11835.3e0000 0004 1936 9262Sheffield Tomography Centre (STC), The University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ UK
| | - P. Davies
- grid.4827.90000 0001 0658 8800Advanced Imaging of Materials (AIM) Facility, College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN UK
| | - P. Kenrick
- grid.35937.3b0000 0001 2270 9879Earth Sciences Department, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - T. Volkenandt
- grid.424549.a0000 0004 0379 7801Carl Zeiss Microscopy GmbH, Carl-Zeiss-Straße 22, 73447 Oberkochen, Germany
| | - C. Pleydell-Pearce
- grid.4827.90000 0001 0658 8800Advanced Imaging of Materials (AIM) Facility, College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN UK
| | - R. Johnston
- grid.4827.90000 0001 0658 8800Advanced Imaging of Materials (AIM) Facility, College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN UK
| |
Collapse
|
8
|
Darlan DM, Rozi MF, Yulfi H. Overview of Immunological Responses and Immunomodulation Properties of Trichuris sp.: Prospects for Better Understanding Human Trichuriasis. Life (Basel) 2021; 11:188. [PMID: 33673676 PMCID: PMC7997218 DOI: 10.3390/life11030188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/23/2022] Open
Abstract
Trichuris sp. infection has appeared as a pathological burden in the population, but the immunomodulation features could result in an opportunity to discover novel treatments for diseases with prominent inflammatory responses. Regarding the immunological aspects, the innate immune responses against Trichuris sp. are also responsible for determining subsequent immune responses, including the activation of innate lymphoid cell type 2 (ILC2s), and encouraging the immune cell polarization of the resistant host phenotype. Nevertheless, this parasite can establish a supportive niche for worm survival and finally avoid host immune interference. Trichuris sp. could skew antigen recognition and immune cell activation and proliferation through the generation of specific substances, called excretory/secretory (ESPs) and soluble products (SPs), which mainly mediate its immunomodulation properties. Through this review, we elaborate and discuss innate-adaptive immune responses and immunomodulation aspects, as well as the clinical implications for managing inflammatory-based diseases, such as inflammatory bowel diseases, allergic, sepsis, and other autoimmune diseases.
Collapse
Affiliation(s)
- Dewi Masyithah Darlan
- Department of Parasitology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (D.M.D.); (H.Y.)
| | | | - Hemma Yulfi
- Department of Parasitology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (D.M.D.); (H.Y.)
| |
Collapse
|
9
|
Bayguinov PO, Fisher MR, Fitzpatrick JAJ. Assaying three-dimensional cellular architecture using X-ray tomographic and correlated imaging approaches. J Biol Chem 2020; 295:15782-15793. [PMID: 32938716 PMCID: PMC7667966 DOI: 10.1074/jbc.rev120.009633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Much of our understanding of the spatial organization of and interactions between cellular organelles and macromolecular complexes has been the result of imaging studies utilizing either light- or electron-based microscopic analyses. These classical approaches, while insightful, are nonetheless limited either by restrictions in resolution or by the sheer complexity of generating multidimensional data. Recent advances in the use and application of X-rays to acquire micro- and nanotomographic data sets offer an alternative methodology to visualize cellular architecture at the nanoscale. These new approaches allow for the subcellular analyses of unstained vitrified cells and three-dimensional localization of specific protein targets and have served as an essential tool in bridging light and electron correlative microscopy experiments. Here, we review the theory, instrumentation details, acquisition principles, and applications of both soft X-ray tomography and X-ray microscopy and how the use of these techniques offers a succinct means of analyzing three-dimensional cellular architecture. We discuss some of the recent work that has taken advantage of these approaches and detail how they have become integral in correlative microscopy workflows.
Collapse
Affiliation(s)
- Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Max R Fisher
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA; Departments of Cell Biology and Physiology and Neuroscience, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA.
| |
Collapse
|
10
|
Lopes-Torres EJ, Girard-Dias W, de Souza W, Miranda K. On the structural organization of the bacillary band of Trichuris muris under cryopreparation protocols and three-dimensional electron microscopy. J Struct Biol 2020; 212:107611. [PMID: 32890779 DOI: 10.1016/j.jsb.2020.107611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Whipworms of the genus Trichuris are nematode parasites that infect mammals and can lead to various intestinal diseases of human and veterinary interest. The most intimate interaction between the parasite and the host intestine occurs through the anterior region of the nematode body, inserted into the intestinal mucosa during infection. One of the most prominent structures of the nematode surface found at the infection site is the bacillary band, a surface domain formed by a number of cells, mostly stichocytes and bacillary glands, whose structure and function are still under debate. Here, we used confocal microscopy, field emission scanning electron microscopy, helium ion microscopy, transmission electron microscopy and FIB-SEM tomography to unveil the functional role of the bacillary gland cell. We analyzed the surface organization as well as the intracellular milieu of the bacillary glands of Trichuris muris in high pressure frozen/freeze-substituted samples. Results showed that the secretory content is preserved in all gland openings, presenting a projected pattern. FIB-SEM analysis showed that the lamellar zone within the bacillary gland chamber is formed by a set of lacunar structures that may exhibit secretory or absorptive functions. In addition, incubation of parasites with the fluid phase endocytosis marker sulforhodamine B showed a time-dependent uptake by the parasite mouth, followed by perfusion through different tissues with ultimate secretion through the bacillary gland. Taken together, the results show that the bacillary gland possess structural characteristics of secretory and absorptive cells and unequivocally demonstrate that the bacillary gland cell functions as a secretory structure.
Collapse
Affiliation(s)
- E J Lopes-Torres
- Laboratório de Helmintologia Romero Lascasas Porto, Universidade do Estado do Rio de Janeiro, Departamento de Microbiologia, Imunologia e Parasitologia, Brazil.
| | - W Girard-Dias
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - W de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, s/n Centro de Ciências da Saúde, Bloco G, CEP: 21941-902, Rio de Janeiro, Brazil; Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Brazil
| | - K Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, s/n Centro de Ciências da Saúde, Bloco G, CEP: 21941-902, Rio de Janeiro, Brazil; Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Else KJ, Keiser J, Holland CV, Grencis RK, Sattelle DB, Fujiwara RT, Bueno LL, Asaolu SO, Sowemimo OA, Cooper PJ. Whipworm and roundworm infections. Nat Rev Dis Primers 2020; 6:44. [PMID: 32467581 DOI: 10.1038/s41572-020-0171-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 12/26/2022]
Abstract
Trichuriasis and ascariasis are neglected tropical diseases caused by the gastrointestinal dwelling nematodes Trichuris trichiura (a whipworm) and Ascaris lumbricoides (a roundworm), respectively. Both parasites are staggeringly prevalent, particularly in tropical and subtropical areas, and are associated with substantial morbidity. Infection is initiated by ingestion of infective eggs, which hatch in the intestine. Thereafter, T. trichiura larvae moult within intestinal epithelial cells, with adult worms embedded in a partially intracellular niche in the large intestine, whereas A. lumbricoides larvae penetrate the gut mucosa and migrate through the liver and lungs before returning to the lumen of the small intestine, where adult worms dwell. Both species elicit type 2 anti-parasite immunity. Diagnosis is typically based on clinical presentation (gastrointestinal symptoms and inflammation) and the detection of eggs or parasite DNA in the faeces. Prevention and treatment strategies rely on periodic mass drug administration (generally with albendazole or mebendazole) to at-risk populations and improvements in water, sanitation and hygiene. The effectiveness of drug treatment is very high for A. lumbricoides infections, whereas cure rates for T. trichiura infections are low. Novel anthelminthic drugs are needed, together with vaccine development and tools for diagnosis and assessment of parasite control in the field.
Collapse
Affiliation(s)
- Kathryn J Else
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Celia V Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Richard K Grencis
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Rayne Building, University College London, London, UK
| | - Ricardo T Fujiwara
- Department of Parasitology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian L Bueno
- Department of Parasitology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samuel O Asaolu
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Oluyomi A Sowemimo
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Philip J Cooper
- Institute of Infection and Immunity, St George's University of London, London, UK.,Facultad de Ciencias Medicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| |
Collapse
|