1
|
Jiang Z, Pan J, Lu J, Mei J, Xu R, Xia D, Yang X, Wang H, Liu C, Xu J, Ding J. NEUROD1 predicts better prognosis in pancreatic cancer revealed by a TILs-based prognostic signature. Front Pharmacol 2022; 13:1025921. [PMID: 36313290 PMCID: PMC9612957 DOI: 10.3389/fphar.2022.1025921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
It has been well-defined that tumor-infiltrating lymphocytes (TILs) play critical roles in pancreatic cancer (PaCa) progression. This research aimed to comprehensively explore the composition of TILs in PaCa and their potential clinical significance. A total of 178 samples from the TCGA and 63 samples from the GSE57495 dataset were enrolled in our study. ImmuCellAI was applied to calculate the infiltrating abundance of 24 immune cell types in PaCa and further survival analysis revealed the prognostic values of TILs in PaCa. Moreover, the Hallmark enticement analysis of differentially expressed genes (DEGs) between low- and high-risk groups was performed as well. Immunohistochemistry staining was used to evaluate NEUROD1 expression. As result, different kinds of TILs had distinct infiltrating features. In addition, Specific TILs subsets had notable prognostic values in PaCa. We further established a 6-TILs signature to assess the prognosis of PaCa patients. Kaplan-Meier and Cox regression analyses both suggested the significant prognostic value of the signature in PaCa. Based on the prognostic signature, we screened a great deal of potential prognostic biomarkers and successfully validated NEUROD1 as a novel prognostic biomarker in PaCa. Overall, the current study illuminated the immune cells infiltrating the landscape in PaCa and identified a TILs-dependent signature and NEUROD1 for prognostic prediction in PaCa patients.
Collapse
Affiliation(s)
- Zhiyang Jiang
- Department of General Surgery, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jiadong Pan
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jiahui Lu
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jie Mei
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Rui Xu
- The First College of Clinical Medicine of Nanjing Medical University, Nanjing, China
| | - Dandan Xia
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xuejing Yang
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Huiyu Wang
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Chaoying Liu
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Junying Xu
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Junli Ding
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
2
|
Li S, Li N, Yang S, Deng H, Li Y, Wang Y, Yang J, Lv J, Dong L, Yu G, Hou X, Wang G. The study of immune checkpoint inhibitors in chronic hepatitis B virus infection. Int Immunopharmacol 2022; 109:108842. [DOI: 10.1016/j.intimp.2022.108842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
|
3
|
Lindblad KE, Ruiz de Galarreta M, Lujambio A. Tumor-Intrinsic Mechanisms Regulating Immune Exclusion in Liver Cancers. Front Immunol 2021; 12:642958. [PMID: 33981303 PMCID: PMC8107356 DOI: 10.3389/fimmu.2021.642958] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Representing the fourth leading cause of cancer-related mortality worldwide, liver cancers constitute a major global health concern. Hepatocellular carcinoma (HCC), the most frequent type of liver cancer, is associated with dismal survival outcomes and has traditionally had few treatment options available. In fact, up until 2017, treatment options for advanced HCC were restricted to broad acting tyrosine kinase inhibitors, including Sorafenib, which has been the standard of care for over a decade. Since 2017, a multitude of mono- and combination immunotherapies that include pembrolizumab, nivolumab, ipilumumab, atezolizumab, and bevacizumab have been FDA-approved for the treatment of advanced HCC with unprecedented response rates ranging from 20 to 30% of patients. However, this also means that ~70% of patients do not respond to this treatment and currently very little is known regarding mechanisms of action of these immunotherapies as well as predictors of response to facilitate patient stratification. With the recent success of immunotherapies in HCC, there is a pressing need to understand mechanisms of tumor immune evasion and resistance to these immunotherapies in order to identify biomarkers of resistance or response. This will enable better patient stratification as well as the rational design of combination immunotherapies to restore sensitivity in resistant patients. The aim of this review is to summarize the current knowledge to date of tumor-intrinsic mechanisms of immune escape in liver cancer, specifically in the context of HCC.
Collapse
Affiliation(s)
- Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY, United States.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY, United States
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY, United States.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Jiang F, Wu C, Wang M, Wei K, Zhou G, Wang J. Multi-omics analysis of tumor mutation burden combined with immune infiltrates in melanoma. Clin Chim Acta 2020; 511:306-318. [PMID: 33164879 DOI: 10.1016/j.cca.2020.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND In multiple malignancies, whether tumor mutation burden (TMB) correlated with increased survival or promotion of immunotherapy remained a debate. Our aim was to analyze the prognosis of TMB and the possible connection with immune infiltration of the skin cutaneous melanoma (SKCM). METHODS We gathered somatic mutation data from the 472 SKCM patients using the Cancer Genome Atlas (TCGA) database and analyzed the mutation profiles using ""maftools" package. TMB was determined and samples were divided into high and low TMB groups. We undertook differential analysis to determine the profiles of expression between two groups using the "limma" package and established the 10 Hub TMB signature from a batch survival study. Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA) were performed in order to test considerably enriched pathways between the two groups. The connections of 10 TMB-related signature mutants with immune infiltration in SKCM were further assessed based on the TIMER database. We used the CIBERSORT package to measure the amount of 22 immune fractions between low and high TMB groups, and Wilcoxon's rank-sum amounts estimated the significant difference. In addition, the Cox regression model and survival analysis were used to determine the prognostic importance of immune cells. Finally, we estabilished a multivaried Cox results Tumor Mutation Burden Prognostic Index (TMBPI) and built a Receiver Operating Characteristic (ROC) curve to check the predictive accuracy. RESULTS Single nucleotide polymorphism (SNP) was more frequent than insertion or deletion and C > T was SKCM's most frequently single nucleotide variants (SNV). Higher TMB levels provided poor survival outcomes, associated with tumor stage, age, and gender. In addition, 224 differentially expressed genes were obtained and Venn diagram established the top 25 immune-related genes. GSEA observed that patients in high TMB groups associated with nucleotide excision repair, pyrimidine metabolism, basal transcription factors, spliceosome, RNA polymerase, and RNA degradation in cancers. 10 hub TMB-related immune genes were also established and 10 signature mutants were correlated with lower immune infiltrates. In addition, the infiltration levels of macrophages M1 and macrophages M2 in the low-TMB group were lower. Eventually, the TMBPI was developed and the AUC of ROC curve was 0.604. CONCLUSIONS High TMB contributed to low survival outcomes and may prevent SKCM immune infiltration. The 10 hub immune signature TMB-related mutants conferred lower immune cell infiltration that required further confirmation.
Collapse
Affiliation(s)
- Feng Jiang
- Neonatal Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Wang
- Plastic Surgery Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ke Wei
- Medical Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guoping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jimei Wang
- Neonatal Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.
| |
Collapse
|