1
|
Xie Y, Qin X, Zhou T, Zhou Y, Tang L, Wang J, Lin Z, Dong Q, Sun P. Investigating the protective effect of loganin in ovariectomy‑induced bone loss through network pharmacology and molecular docking. Exp Ther Med 2024; 28:417. [PMID: 39301261 PMCID: PMC11411401 DOI: 10.3892/etm.2024.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/30/2024] [Indexed: 09/22/2024] Open
Abstract
Loganin, a major iridoid glycoside derived from Cornus officinalis, exerts strong anti-inflammatory property. The present study aimed to investigate the underlying mechanism of loganin to reduce estrogen deficiency-induced bone loss through a combination of network pharmacology, molecular docking and in vivo validation. First, the drug targets and structural interactions of loganin with osteoclasts on postmenopausal osteoporosis (PMOP) were predicted through network pharmacology and molecular docking. An ovariectomized (OVX) mouse model was established to experimentally validate loganin's anti-PMOP efficacy, supported by its protective effect on bone destruction and excessive inflammatory cytokines. The top 10 core targets of loganin generated by a protein-protein interaction network were the following: GAPDH, VEGFA, EGFR, ESR1, HRAS, SRC, FGF2, HSP90AA1, PTGS2 and IL-2. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that loganin suppressed PMOP via mediating inflammation, bone formation, IL-17 signaling pathway and NF-κB signaling pathway. Molecular docking results indicated strong binding between loganin and core targets, in which the binding energy was approximately -5.2 and -7.4 kcal/mol. In vivo mouse model revealed that loganin inhibited the expression of pro-osteoclastic markers, such as tartrate-resistant acid phosphatase, C-terminal telopeptide, TNF-α and IL-6, enhanced the secretion of bone formation markers, such as procollagen type I intact n-terminal pro-peptide and IL-10, and improved bone micro-structure (bone volume/tissue volume and trabecular number), representative of the anti-resorptive effect mediated by loganin. In summary, the present study combined network pharmacology and molecular docking to predict the underlying mechanism of loganin against PMOP, validated by the in vivo mouse model showing that loganin attenuated OVX-induced bone loss by inhibiting inflammation.
Collapse
Affiliation(s)
- Youhong Xie
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xuyao Qin
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Tianyu Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Yilin Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Lin Tang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Jiangyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhongwei Lin
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Qunwei Dong
- Department of Orthopedics, Yunfu Hospital of Traditional Chinese Medicine, Yunfu, Guangdong 527300, P.R. China
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
2
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Carmona-Rivera C, Kaplan MJ, O'Neil LJ. Neutrophils in Inflammatory Bone Diseases. Curr Osteoporos Rep 2024; 22:280-289. [PMID: 38418800 PMCID: PMC11061041 DOI: 10.1007/s11914-024-00865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW In this review, we summarize the current evidence that suggests that neutrophils play a key role in facilitating damage to local bone structures. RECENT FINDINGS Neutrophil infiltration is a hallmark of inflammatory bone diseases such as rheumatoid arthritis (RA) and periodontitis disease (PD). Both of these human diseases are marked by an imbalance in bone homeostasis, favoring the degradation of local bone which ultimately leads to erosions. Osteoclasts, a multinucleated resident bone cell, are responsible for facilitating the turnover of bone and the bone damage observed in these diseases. The involvement of neutrophils and neutrophil extracellular trap formation have recently been implicated in exacerbating osteoclast function through direct and indirect mechanisms. We highlight a recent finding that NET proteins such as histones and elastase can generate non-canonical, inflammatory osteoclasts, and this process is mediated by post-translational modifications such as citrullination and carbamylation, both of which act as autoantigens in RA. It appears that NETs, autoantibodies, modified proteins, cytokines, and osteoclasts all ultimately contribute to local and permanent bone damage in RA and PD. However, more studies are needed to fully understand the role of neutrophils in inflammatory bone diseases.
Collapse
Affiliation(s)
- Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liam J O'Neil
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Mei J, Hu H, Ding H, Huang Y, Zhang W, Chen X, Fang X. Investigating the causal relationship between ankylosing spondylitis and osteoporosis in the European population: a bidirectional Mendelian randomization study. Front Immunol 2023; 14:1163258. [PMID: 37359532 PMCID: PMC10285397 DOI: 10.3389/fimmu.2023.1163258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Background Ankylosing Spondylitis (AS) is an inflammatory condition affecting the spine, which may lead to complications such as osteoporosis (OP). Many observational studies have demonstrated a close relationship with strong evidence between OP and AS. The combination of AS and OP is already an indisputable fact, but the exact mechanism of AS complicated with OP is unclear. To better prevent and treat OP in patients with AS, it is necessary to understand the specific mechanism of OP in these patients. In addition, there is a study showing that OP is a risk factor for AS, but the causal relationship between them is not yet clear. Therefore, we conducted a bidirectional Mendelian randomization (MR) analysis to determine whether there is a direct causal effect between AS and OP and to investigate the co-inherited genetic information between the two. Methods Bone mineral density (BMD) was used as a phenotype for OP. The AS dataset was taken from the IGAS consortium and included people of European ancestry (9,069 cases and 13,578 controls). BMD datasets were obtained from the GEFOS consortium, a large GWAS meta-analysis study, and the UK Biobank and were categorized based on site (total body (TB): 56,284 cases; lumbar spine (LS): 28,498 cases; femoral neck (FN): 32,735 cases; forearm (FA): 8,143 cases; and heel: 265,627 cases) and age (0-15: 11,807 cases; 15-30: 4,180 cases; 30-45: 10,062 cases; 45-60: 18,062 cases; and over 60: 22,504 cases).To obtain the casual estimates, the inverse variant weighted (IVW) method was mainly used due to its good statistical power and robustness. The presence of heterogeneity was evaluated using Cochran's Q test. Pleiotropy was assessed utilizing MR-Egger regression and MR-pleiotropy residual sum and outlier (MR-PRESSO). Results Generally, there were no significant causal associations between genetically predicted AS and decreased BMD levels. The results of MR-Egger regression, Weighted Median, and Weighted Mode methods were consistent with those of the IVW method. However, there was a sign of a connection between genetically elevated BMD levels and a decreased risk of AS (Heel-BMD: OR = 0.879, 95% CI: 0.795-0.971, P = 0.012; Total-BMD: OR = 0.948, 95% CI: 0.907-0.990, P = 0.017; LS-BMD: OR = 0.919, 95% CI: 0.861-0.980, P = 0.010). The results were confirmed to be reliable by sensitivity analysis. Conclusion This MR study found that the causal association between genetic liability to AS and the risk of OP or lower BMD in the European population was not evident, which highlights the second effect (e.g., mechanical reasons such as limited movement) of AS on OP. However, genetically predicted decreased BMD/OP is a risk factor for AS with a causal relationship, implying that patients with OP should be aware of the potential risk of developing AS. Moreover, OP and AS share similar pathogenesis and pathways.
Collapse
Affiliation(s)
- Jian Mei
- Department of Orthopaedic Surgery, Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hongxin Hu
- Department of Orthopaedic Surgery, Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Haiqi Ding
- Department of Orthopaedic Surgery, Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ying Huang
- Department of Orthopaedic Surgery, Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoqing Chen
- Department of Orthopedic Surgery, Quanzhou First Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xinyu Fang
- Department of Orthopaedic Surgery, Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Dar HY, Perrien DS, Pal S, Stoica A, Uppuganti S, Nyman JS, Jones RM, Weitzmann MN, Pacifici R. Callus γδ T cells and microbe-induced intestinal Th17 cells improve fracture healing in mice. J Clin Invest 2023; 133:e166577. [PMID: 36881482 PMCID: PMC10104897 DOI: 10.1172/jci166577] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
IL-17A (IL-17), a driver of the inflammatory phase of fracture repair, is produced locally by several cell lineages including γδ T cells and Th17 cells. However, the origin of these T cells and their relevance for fracture repair are unknown. Here, we show that fractures rapidly expanded callus γδ T cells, which led to increased gut permeability by promoting systemic inflammation. When the microbiota contained the Th17 cell-inducing taxon segmented filamentous bacteria (SFB), activation of γδ T cells was followed by expansion of intestinal Th17 cells, their migration to the callus, and improved fracture repair. Mechanistically, fractures increased the S1P receptor 1-mediated (S1PR1-mediated) egress of Th17 cells from the intestine and enhanced their homing to the callus through a CCL20-mediated mechanism. Fracture repair was impaired by deletion of γδ T cells, depletion of the microbiome by antibiotics (Abx), blockade of Th17 cell egress from the gut, or Ab neutralization of Th17 cell influx into the callus. These findings demonstrate the relevance of the microbiome and T cell trafficking for fracture repair. Modifications of microbiome composition via Th17 cell-inducing bacteriotherapy and avoidance of broad-spectrum Abx may represent novel therapeutic strategies to optimize fracture healing.
Collapse
Affiliation(s)
- Hamid Y. Dar
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Daniel S. Perrien
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Subhashis Pal
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Andreea Stoica
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Sasidhar Uppuganti
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffry S. Nyman
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Rheinallt M. Jones
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - M. Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Atlanta VA Health Care System, Department of Veterans Affairs, Decatur, Georgia, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Compound of Cynanchum wilfordii and Humulus lupulus L. Ameliorates Menopausal Symptoms in Ovariectomized Mice. Reprod Sci 2022; 30:1625-1636. [PMID: 36333646 DOI: 10.1007/s43032-022-01117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Cynanchum wilfordii and Humulus lupulus L. have been used for their various pharmacological properties in South Korea as a traditional medicine or health functional food, respectively, and their intake may relieve menopausal symptoms. The purpose of current study was to determine the effect of compound of Cynanchum wilfordii and Humulus lupulus L. (CWHL) in menopausal symptoms of ovariectomized (OVX) mice. OVX mice received CWHL or caudatin (an active ingredient of CWHL) once daily for 7 weeks. Values for hypothalamic serotonin (5-HT), dopamine, norepinephrine, estrogen receptor (ER)-β, 5-HT1A, and 5-HT2A were significantly enhanced, while value for hypothalamic monoamine oxidase A was reduced in CWHL and caudatin groups compared with the OVX group. CWHL and caudatin significantly reduced tail skin temperature and rectal temperature of OVX mice through partial recovering of the levels of serum estrogen, nitric oxide, follicle-stimulating hormone, luteinizing hormone, and receptor-activator of the NF-κB ligand (RANKL). Moreover, CWHL and caudatin improved bone mineral density via decreasing levels of serum RANKL, tartrate-resistant acid phosphatase, and collagen type 1 cross-linked N-telopeptide and improving levels of serum alkaline phosphatase, osteoprotegerin, and osteocalcin compared with the OVX group without adverse effects such as dyslipidemia. CWHL increased uterine ER-β levels but did not change uterus and vaginal weights. Taken together, the results indicate that CWHL may relieve menopausal symptoms by controlling depression-, hot flashes-, and osteoporosis-associated biomarkers. Therefore, we propose that CWHL might be a safe and potential candidate for management of menopause as a health functional food.
Collapse
|
7
|
Fisher CR, Salmons HI, Mandrekar J, Greenwood-Quaintance KE, Abdel MP, Patel R. A 92 protein inflammation panel performed on sonicate fluid differentiates periprosthetic joint infection from non-infectious causes of arthroplasty failure. Sci Rep 2022; 12:16135. [PMID: 36167782 PMCID: PMC9514711 DOI: 10.1038/s41598-022-20444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
Periprosthetic joint infection (PJI) is a major complication of total joint arthroplasty, typically necessitating surgical intervention and prolonged antimicrobial therapy. Currently, there is no perfect assay for PJI diagnosis. Proteomic profiling of sonicate fluid has the potential to differentiate PJI from non-infectious arthroplasty failure (NIAF) and possibly clinical subsets of PJI and/or NIAF. In this study, 200 sonicate fluid samples, including 90 from subjects with NIAF (23 aseptic loosening, 35 instability, 10 stiffness, five osteolysis, and 17 other) and 110 from subjects with PJI (40 Staphylococcus aureus, 40 Staphylococcus epidermidis, 10 Staphylococcus lugdunensis, 10 Streptococcus agalactiae, and 10 Enterococcus faecalis) were analyzed by proximity extension assay using the 92 protein Inflammation Panel from Olink Proteomics. Thirty-seven of the 92 proteins examined, including CCL20, OSM, EN-RAGE, IL8, and IL6, were differentially expressed in PJI versus NIAF sonicate fluid samples, with none of the 92 proteins differentially expressed between staphylococcal versus non-staphylococcal PJI, nor between the different types of NIAF studied. IL-17A and CCL11 were differentially expressed between PJI caused by different bacterial species, with IL-17A detected at higher levels in S. aureus compared to S. epidermidis and S. lugdunensis PJI, and CCL11 detected at higher levels in S. epidermidis compared to S. aureus and S. agalactiae PJI. Receiver operative characteristic curve analysis identified individual proteins and combinations of proteins that could differentiate PJI from NIAF. Overall, proteomic profiling using this small protein panel was able to differentiate between PJI and NIAF sonicate samples and provide a better understanding of the immune response during arthroplasty failure.
Collapse
Affiliation(s)
- Cody R Fisher
- Department of Immunology, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Harold I Salmons
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jay Mandrekar
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Sciences, Mayo Clinic, Rochester, MN, USA
| | - Kerryl E Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Livshits G, Kalinkovich A. Targeting chronic inflammation as a potential adjuvant therapy for osteoporosis. Life Sci 2022; 306:120847. [PMID: 35908619 DOI: 10.1016/j.lfs.2022.120847] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Systemic, chronic, low-grade inflammation (SCLGI) underlies the pathogenesis of various widespread diseases. It is often associated with bone loss, thus connecting chronic inflammation to the pathogenesis of osteoporosis. In postmenopausal women, osteoporosis is accompanied by SCLGI development, likely owing to estrogen deficiency. We propose that SCGLI persistence in osteoporosis results from failed inflammation resolution, which is mainly mediated by specialized, pro-resolving mediators (SPMs). In corroboration, SPMs demonstrate encouraging therapeutic effects in various preclinical models of inflammatory disorders, including bone pathology. Since numerous data implicate gut dysbiosis in osteoporosis-associated chronic inflammation, restoring balanced microbiota by supplementing probiotics and prebiotics could contribute to the efficient resolution of SCGLI. In the present review, we provide evidence for this hypothesis and argue that efficient SCGLI resolution may serve as a novel approach for treating osteoporosis, complementary to traditional anti-osteoporotic medications.
Collapse
Affiliation(s)
- Gregory Livshits
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
9
|
Roberts JL, Mella-Velazquez G, Dar HY, Liu G, Drissi H. Deletion of IL-17ra in osteoclast precursors increases bone mass by decreasing osteoclast precursor abundance. Bone 2022; 157:116310. [PMID: 34973492 PMCID: PMC10084774 DOI: 10.1016/j.bone.2021.116310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
Metabolic bone diseases, such as osteoporosis, typically reflect an increase in the number and activity of bone-resorbing osteoclasts that result in a loss of bone mass. Inflammatory mediators have been identified as drivers of both osteoclast formation and activity. The IL-17 family of inflammatory cytokines has gained attention as important contributors to both bone formation and resorption. The majority of IL-17 cytokines signal through receptor complexes containing IL-17a receptor (IL-17ra); however, the role of IL-17ra signaling in osteoclasts remains elusive. In this study, we conditionally deleted Il17ra in osteoclast precursors using LysM-Cre and evaluated the phenotypes of skeletally mature male and female conditional knockout and control mice. The conditional knockout mice displayed an increase in trabecular bone microarchitecture in both the appendicular and axial skeleton. Assessment of osteoclast formation in vitro revealed that deletion of Il17ra decreased osteoclast number, which was confirmed in vivo using histomorphometry. This phenotype was likely driven by a lower abundance of osteoclast precursors in IL-17ra conditional knockout mice. This study suggests that IL-17ra signaling in preosteoclasts can contribute to osteoclast formation and subsequent bone loss.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | | | - Hamid Y Dar
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Guanglu Liu
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
| |
Collapse
|
10
|
Srivastava RK, Sapra L. The Rising Era of “Immunoporosis”: Role of Immune System in the Pathophysiology of Osteoporosis. J Inflamm Res 2022; 15:1667-1698. [PMID: 35282271 PMCID: PMC8906861 DOI: 10.2147/jir.s351918] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
Discoveries in the last few years have emphasized the existence of an enormous breadth of communication between bone and the immune system in maintaining skeletal homeostasis. Originally, the discovery of various factors was assigned to the immune system viz. interleukin (IL)-6, IL-10, IL-17, tumor necrosis factor (TNF)-α, receptor activator of nuclear factor kappa B ligand (RANKL), nuclear factor of activated T cells (NFATc1), etc., but now these factors have also been shown to have a significant impact on osteoblasts (OBs) and osteoclasts (OCs) biology. These discoveries led to an alteration in the approach for the treatment of several bone pathologies including osteoporosis. Osteoporosis is an inflammatory bone anomaly affecting more than 500 million people globally. In 2018, to highlight the importance of the immune system in the pathophysiology of osteoporosis, our group coined the term “immunoporosis”. In the present review, we exhaustively revisit the characteristics, mechanism of action, and function of both innate and adaptive immune cells with the goal of understanding the potential of immune cells in osteoporosis. We also highlight the Immunoporotic role of gut microbiota (GM) for the treatment and management of osteoporosis. Importantly, we further discuss whether an immune cell-based strategy to treat and manage osteoporosis is feasible and relevant in clinical settings.
Collapse
Affiliation(s)
- Rupesh K Srivastava
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
- Correspondence: Rupesh K Srivastava, Tel +91 11-26593548, Email ;
| | - Leena Sapra
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| |
Collapse
|
11
|
Zhang Y, Liu X, Li Y, Song M, Li Y, Yang A, Zhang Y, Wang D, Hu M. Aucubin slows the development of osteoporosis by inhibiting osteoclast differentiation via the nuclear factor erythroid 2-related factor 2-mediated antioxidation pathway. PHARMACEUTICAL BIOLOGY 2021; 59:1556-1565. [PMID: 34757891 PMCID: PMC8583775 DOI: 10.1080/13880209.2021.1996614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
CONTEXT Osteoporosis (OP) is a metabolic disease. We have previously demonstrated that aucubin (AU) has anti-OP effects that are due to its promotion of the formation of osteoblasts. OBJECTIVES To investigate the mechanisms of anti-OP effects of AU. MATERIALS AND METHODS C57BL/6 mice were randomly divided into control group, 30 mg/kg Dex-induced OP group (OP model group, 15 μg/kg oestradiol-treated positive control group, 5 or 45 mg/kg AU-treated group), and 45 mg/kg AU-alone-treated group. The administration lasted for 7 weeks. Subsequently, 1, 2.5 and 5 µM AU were incubated with 50 ng/mL RANKL-induced RAW264.7 cells for 7 days to observe osteoclast differentiation. The effect of AU was evaluated by analysing tissue lesions, biochemical factor and protein expression. RESULTS The LD50 of AU was greater than 45 mg/kg. AU increased the number of trabeculae and reduced the loss of chondrocytes in OP mice. Compared to OP mice, AU-treated mice exhibited decreased serum concentrations of TRAP5b (19.6% to 28.4%), IL-1 (12.2% to 12.6%), IL-6 (12.1%) and ROS (5.9% to 10.7%) and increased serum concentrations of SOD (14.6% to 19.4%) and CAT (17.2% to 27.4%). AU treatment of RANKL-exposed RAW264.7 cells decreased the numbers of multi-nuclear TRAP-positive cells, reversed the over-expression of TRAP5, NFATc1 and CTSK. Furthermore, AU increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins in RANKL-exposed RAW264.7 cells. CONCLUSIONS AU slows the development of OP via Nrf2-mediated antioxidant pathways, indicating the potential use of AU in OP therapy and other types of OP research.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Yangyang Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Minkai Song
- School of Life Sciences, Jilin University, Changchun, China
| | - Yutong Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Anhui Yang
- School of Life Sciences, Jilin University, Changchun, China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
- CONTACT Di Wang School of Life Sciences, Jilin University, Qianjin Street 2699, Changchun, Jilin, P. R. China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
- Min Hu Department of Orthodontics, College of Stomatology, Jilin University, No. 1500, Qinghua Road, Changchun, Jilin, P. R. China
| |
Collapse
|
12
|
El-Mallah R, Saab AA, Nassar N. Serum interleukin-17 and estradiol levels in postmenopausal women in relation to osteoporosis. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2021. [DOI: 10.1186/s43166-021-00083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
In post-menopausal women, estrogen deficiency leads to instability between bone formation and resorption which is regulated by osteoclastogenic cytokines leading to resorption. Interleukin-17 (IL-17) a proinflammatory cytokine has been found as an important regulator of osteoclast-genesis induced by estrogen deficiency in favor of bone loss in animal studies.
The study aimed to evaluate levels of IL-17 and estrogen (E2) in relation to bone mineral density (BMD) and risk of fracture in postmenopausal women with and without osteoporosis.
Results
IL-17 levels were significantly higher and E2 levels were significantly lower in the osteoporotic group compared to the non-osteoporotic group (P value ≤ 0.01). There was a highly significant difference in DEXA score and FRAX index between two groups: with higher values of FRAX and lower values of DEXA score among osteoporotic group (P value ≤ 0.01). IL-17 was inversely correlated to estrogen level and highly significant negative correlation with DEXA as well as a highly significant positive one with FRAX index. IL-17 serum level was able to diagnose osteoporosis at a cutoff level of > 80 pg/mL with 100% sensitivity, 100% specificity, 100% positive predictive value (PPV), and 100% negative predictive value (NPV).
Conclusions
Serum IL-17 was significantly elevated in osteoporotic postmenopausal women when compared to healthy postmenopausal ones and was inversely correlated with estrogen level and DEXA.
Collapse
|
13
|
Plasma Rich in Growth Factors in the Treatment of Endodontic Periapical Lesions in Adult Patients: A Narrative Review. Pharmaceuticals (Basel) 2021; 14:ph14101041. [PMID: 34681265 PMCID: PMC8539488 DOI: 10.3390/ph14101041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Platelet concentrates have been widely used in regenerative medicine, including endodontics. The aim of this manuscript was to assess critically the efficacy of PRF in the treatment of endodontic periapical lesions in adult patients on the basis of the literature. The PICO approach was used to properly develop literature search strategies. The PubMed database was analyzed with the keywords: "((PRP) OR (PRF) OR (PRGF) OR (CGF)) AND (endodontic) AND ((treatment) OR (therapy))". After screening of 155 results, 14 articles were included in this review. Different types of platelet concentrates are able to stimulate the processes of proliferation and differentiation of mesenchymal stem cells. Platelet rich fibrin (PRF) releases growth factors for at least 7 days at the application site. Growth factors and released cytokines stimulate the activity of osteoblasts. Moreover, the release of growth factors accelerates tissue regeneration by increasing the migration of fibroblasts. It was not possible to assess the efficacy of PRF supplementation in the treatment of endodontic periapical lesions in permanent, mature teeth with closed apexes, due to the lack of well-designed scientific research. Further studies are needed to analyze the effect of PRF on the healing processes in the periapical region.
Collapse
|
14
|
Al-Bogami M, Bystrom J, Clanchy F, Taher TE, Mangat P, Williams RO, Jawad AS, Mageed RA. TNFα inhibitors reduce bone loss in rheumatoid arthritis independent of clinical response by reducing osteoclast precursors and IL-20. Rheumatology (Oxford) 2021; 60:947-957. [PMID: 32984900 DOI: 10.1093/rheumatology/keaa551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/17/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES About half of RA patients treated with TNFα inhibitors either do not respond or lose their initial therapeutic response over time. The clinical response is measured by reduction in DAS28, which primarily reflects inflammation. However, other effects of TNFα inhibitors, such as impact on bone erosion, are not assessed by DAS28. We aimed to examine the effect of TNFα inhibitors on bone density, bone biomarkers and cytokine production in responder and non-responder patients and assessed mechanisms of action. METHODS BMD in the lumbar spine and femur neck of 117 RA patients was measured by DEXA scan. Bone turnover biomarkers CTX, osteoprotegerin (OPG), osteocalcin and RANKL were measured by ELISA. Levels of 16 cytokines in plasma and in tissue culture supernatants of ex vivo T cells were measured by multiplex assays and ELISA. The effect of treatment with TNFα inhibitors on blood mononuclear cell (MNC) differentiation to osteoclast precursors (OCP) was measured flow cytometry and microscopy. RESULTS TNFα inhibitors improved lumbar spine BMD but had modest effects on blood bone biomarkers, irrespective of patients' clinical response. Blood OCP numbers and the ability of monocytes to differentiate to OCP in vitro declined after treatment. Treatment also reduced RANK expression and IL-20 production. BMD improvement correlated with reduced levels of IL-20 in responder patients. CONCLUSION This study reveals that TNFα inhibitors reduce lumbar spine bone loss in RA patients irrespective of changes in DAS28. The reduction in bone loss is associated with reduction in IL-20 levels in responder patients.
Collapse
Affiliation(s)
- Mohammed Al-Bogami
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Felix Clanchy
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Pamela Mangat
- Department of Rheumatology, Royal Free Hospital, NHS Foundation Trust London, London, UK
| | | | - Ali S Jawad
- Department of Rheumatology, Barts Health NHS Trust, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Lorenzo J. From the gut to bone: connecting the gut microbiota with Th17 T lymphocytes and postmenopausal osteoporosis. J Clin Invest 2021; 131:146619. [PMID: 33645543 DOI: 10.1172/jci146619] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is a serious clinical problem that often follows the accelerated bone loss that occurs after the estrogen withdrawal of menopause. In order to better understand the mechanism that produces estrogen withdrawal-induced bone loss, Yu and Pal et al., as reported in this issue of the JCI, examined mice that underwent ovariectomy (OVX). In C57BL/6 mice with enhanced Th17 cells in gut tissue, the authors demonstrated that OVX increased migration of TNF-expressing Th17 cells from the gut to the bone marrow. Furthermore, they found that manipulation of the pathways by which lymphocytes migrate and home to bone marrow prevented the increase of TNF+, Th17 cells in bone marrow after OVX in mice and the trabecular, but not cortical, bone loss in this model. These results argue that interactions of the gut microbiota with the immune system are involved in the effects of estrogen withdrawal on trabecular bone.
Collapse
|
16
|
Yu M, Pal S, Paterson CW, Li JY, Tyagi AM, Adams J, Coopersmith CM, Weitzmann MN, Pacifici R. Ovariectomy induces bone loss via microbial-dependent trafficking of intestinal TNF+ T cells and Th17 cells. J Clin Invest 2021; 131:143137. [PMID: 33586672 PMCID: PMC7880410 DOI: 10.1172/jci143137] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen deficiency causes a gut microbiome-dependent expansion of BM Th17 cells and TNF-α-producing T cells. The resulting increased BM levels of IL-17a (IL-17) and TNF stimulate RANKL expression and activity, causing bone loss. However, the origin of BM Th17 cells and TNF+ T cells is unknown. Here, we show that ovariectomy (ovx) expanded intestinal Th17 cells and TNF+ T cells, increased their S1P receptor 1-mediated (S1PR1-mediated) egress from the intestine, and enhanced their subsequent influx into the BM through CXCR3- and CCL20-mediated mechanisms. Demonstrating the functional relevance of T cell trafficking, blockade of Th17 cell and TNF+ T cell egress from the gut or their influx into the BM prevented ovx-induced bone loss. Therefore, intestinal T cells are a proximal target of sex steroid deficiency relevant for bone loss. Blockade of intestinal T cell migration may represent a therapeutic strategy for the treatment of postmenopausal bone loss.
Collapse
Affiliation(s)
- Mingcan Yu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Subhashis Pal
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Cameron W. Paterson
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Medical Corps, United States Navy, NROTC, Atlanta, Georgia, USA
| | - Jau-Yi Li
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Abdul Malik Tyagi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Craig M. Coopersmith
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - M. Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|