1
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|
2
|
Ford T, McAdams ZL, Townsend KS, Martin LM, Johnson PJ, Ericsson AC. Effect of Sugar Beet Pulp on the Composition and Predicted Function of Equine Fecal Microbiota. BIOLOGY 2023; 12:1254. [PMID: 37759653 PMCID: PMC10525916 DOI: 10.3390/biology12091254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
The purpose of this study is to determine the effect of the partial replacement of dietary hay with sugar beet pulp (SBP) on the composition and predicted function of the fecal microbiota of healthy adult horses. Fecal samples were collected daily for 12 days from six adult horses after removal from pasture, including a five-day acclimation period, and a seven-day period following the introduction of SBP into their diet, and compared to six untreated horses over a comparable period. Fecal DNA was subjected to 16S rRNA amplicon sequencing and a longitudinal analysis was performed comparing the composition and predicted function. While no significant treatment-associated changes in the richness, alpha diversity, or beta diversity were detected, random forest regression identified several high-importance taxonomic features associated with change over time in horses receiving SBP. A similar analysis of the predicted functional pathways identified several high-importance pathways, including those involved in the production of L-methionine and butyrate. These data suggest that feeding SBP to healthy adult horses acutely increases the relative abundance of several Gram-positive taxa, including Cellulosilyticum sp., Moryella sp., and Weissella sp., and mitigates the predicted functional changes associated with removal from pasture. Large-scale studies are needed to assess the protective effect of SBP on the incidence of the gastrointestinal conditions of horses.
Collapse
Affiliation(s)
- Tamara Ford
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
| | - Zachary L. McAdams
- Molecular Pathogenesis and Therapeutics (MPT) Program, University of Missouri (MU), Columbia, MO 65201, USA
| | - Kile S. Townsend
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
| | - Lynn M. Martin
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
| | - Philip J. Johnson
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
| | - Aaron C. Ericsson
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
- Molecular Pathogenesis and Therapeutics (MPT) Program, University of Missouri (MU), Columbia, MO 65201, USA
- MU Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65201, USA
| |
Collapse
|
3
|
Isolation and Identification of Lactococcus lactis and Weissella cibaria Strains from Fermented Beetroot and an Investigation of Their Properties as Potential Starter Cultures and Probiotics. Foods 2022; 11:foods11152257. [PMID: 35954024 PMCID: PMC9368051 DOI: 10.3390/foods11152257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
The presence of certain microorganisms in dairy products or silage is highly desirable. Among them are probiotic strains of lactic acid bacteria (LAB), which show many beneficial features, including antimicrobial properties that support the development of beneficial microflora; in addition, owing to their biochemical activity, they influence the nutritional, dietary, and organoleptic properties of food products. Before being placed on the market, each strain requires separate testing to determine its probiotic properties and effectiveness. The aim of this study was to isolate LAB strains from a pickled beetroot sample that could be used in the dairy industry and with the potential to be considered as a probiotic in the future. Two strains identified using the MALDI technique were selected—Lactococcus lactis and Weissella cibaria. The optimal growth conditions of the strains were determined, and their proteolytic properties were assessed with the use of the o-PA reagent and spectrophotometry. The lipid profile was analyzed using the SALDI (surface-assisted laser desorption/ionization) technique and silver nanoparticles. High-performance liquid chromatography was used to assess the ability of the strains to synthesize beneficial metabolites, such as B vitamins (B2, B3, and B9) or lactic acid, and gas chromatography was used to analyze the substances responsible for organoleptic properties. Moreover, the ability to inhibit the growth of pathogenic strains was also tested in the selected strains. Both tested strains demonstrated the desired properties of starter cultures for future use in functional food production, showing that fermented plant products can serve as valuable potential probiotic sources.
Collapse
|
4
|
Kim E, Yang SM, Kim IS, Kim HY. Identification of novel molecular targets for Weissella species-specific real-time PCR based on pangenome analysis. Appl Microbiol Biotechnol 2022; 106:4157-4168. [PMID: 35672470 DOI: 10.1007/s00253-022-12003-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/24/2023]
Abstract
Some Weissella species are used in probiotic products because of their beneficial effects in humans, whereas some species are considered as opportunistic pathogens that cause infections in humans. Therefore, an accurate and rapid identification of Weissella species is essential to control pathogenic Weissella species or isolate new functional strains with probiotic effects from their habitat. The objective of our study was to extract novel molecular targets using pangenome analysis for the identification of major Weissella species present in food. With 50 genomes representing 11 Weissella species, novel molecular targets were mined based on their 100% presence in the respective strains of the target species and absence in the strains of non-target bacteria. Primers based on molecular targets showed positive results for the corresponding species, whereas 79 non-target strains showed negative results. Standard curves revealed good linearity in the range of 103-108 colony-forming units per reaction. Our method was successfully applied to 74 Weissella strains isolated from food samples to demonstrate that the molecular targets provided a viable alternative to the 16S rRNA sequence. Furthermore, it was possible to identify and quantify Weissella communities in fermented foods. These results demonstrate that our method can be used for effective and accurate screening for the presence of Weissella species in foods. KEY POINTS: • This is first study to mine novel targets for differentiating 11 Weissella species. • The novel targets showed higher resolution than the 16S rRNA gene sequence. • The PCR method effectively detected Weissella species with opposing properties.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ik-Seon Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
5
|
Glucuronosylated and linear xylooligosaccharides from Quinoa stalks xylan as potential prebiotic source for growth of Bifidobacterium adolescentis and Weissella cibaria. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Linares-Pastén JA, Hero JS, Pisa JH, Teixeira C, Nyman M, Adlercreutz P, Martinez MA, Karlsson EN. Novel xylan-degrading enzymes from polysaccharide utilizing loci of Prevotella copri DSM18205. Glycobiology 2021; 31:1330-1349. [PMID: 34142143 PMCID: PMC8631079 DOI: 10.1093/glycob/cwab056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
Prevotella copri is a bacterium that can be found in the human gastrointestinal tract (GIT). The role of P. copri in the GIT is unclear, and elevated numbers of the microbe have been reported both in dietary fiber-induced improvement in glucose metabolism but also in conjunction with certain inflammatory conditions. These findings raised our interest in investigating the possibility of P. copri to grow on xylan, and identify the enzyme systems playing a role in digestion of xylan-based dietary fibers. Two xylan degrading polysaccharide utilizing loci (PUL10 and 15) were found in the genome, with three and eight glycoside hydrolase (GH) -encoding genes, respectively. Three of them were successfully produced in Escherichia coli: One extracellular enzyme from GH43 (subfamily 12, in PUL10, 60 kDa) and two enzymes from PUL15, one extracellular GH10 (41 kDa), and one intracellular GH43 (subfamily 137 kDa). Based on our results, we propose that in PUL15, GH10 (1) is an extracellular endo-1,4-β-xylanase, that hydrolazes mainly glucuronosylated xylan polymers to xylooligosaccharides (XOS); while, GH43_1 in the same PUL, is an intracellular β-xylosidase, catalyzing complete hydrolysis of the XOS to xylose. In PUL10, the characterized GH43_12 is an arabinofuranosidase, with a role in degradation of arabinoxylan, catalyzing removal of arabinose-residues on xylan.
Collapse
Affiliation(s)
| | - Johan Sebastian Hero
- Planta Piloto de Procesos Industriales Microbiológicos
PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB
San Miguel de Tucumán, Argentina
| | - José Horacio Pisa
- Planta Piloto de Procesos Industriales Microbiológicos
PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB
San Miguel de Tucumán, Argentina
| | - Cristina Teixeira
- Biotechnology, Department of Chemistry,
Lund University, P.O. Box 124, 221 00 Lund,
Sweden
| | - Margareta Nyman
- Department of Food Technology, Engineering and
Nutrition, Lund University, P.O. Box 124, SE-221
00 Lund, Sweden
| | - Patrick Adlercreutz
- Biotechnology, Department of Chemistry,
Lund University, P.O. Box 124, 221 00 Lund,
Sweden
| | - M Alejandra Martinez
- Planta Piloto de Procesos Industriales Microbiológicos
PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB
San Miguel de Tucumán, Argentina
- Facultad de Ciencias Exactas y
Tecnología, UNT. Av. Independencia 1800, San Miguel de
Tucumán 4000, Argentina
| | - Eva Nordberg Karlsson
- Biotechnology, Department of Chemistry,
Lund University, P.O. Box 124, 221 00 Lund,
Sweden
| |
Collapse
|
7
|
Tenea GN, Hurtado P. Next-Generation Sequencing for Whole-Genome Characterization of Weissella cibaria UTNGt21O Strain Originated From Wild Solanum quitoense Lam. Fruits: An Atlas of Metabolites With Biotechnological Significance. Front Microbiol 2021; 12:675002. [PMID: 34163450 PMCID: PMC8215347 DOI: 10.3389/fmicb.2021.675002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The whole genome of Weissella cibaria strain UTNGt21O isolated from wild fruits of Solanum quitoense (naranjilla) shrub was sequenced and annotated. The similarity proportions based on the genus level, as a result of the best hits for the entire contig, were 54.84% with Weissella, 6.45% with Leuconostoc, 3.23% with Lactococcus, and 35.48% no match. The closest genome was W. cibaria SP7 (GCF_004521965.1) with 86.21% average nucleotide identity (ANI) and 3.2% alignment coverage. The genome contains 1,867 protein-coding genes, among which 1,620 were assigned with the EggNOG database. On the basis of the results, 438 proteins were classified with unknown function from which 247 new hypothetical proteins have no match in the nucleotide Basic Local Alignment Search Tool (BLASTN) database. It also contains 78 tRNAs, six copies of 5S rRNA, one copy of 16S rRNA, one copy of 23S rRNA, and one copy of tmRNA. The W. cibaria UTNGt21O strain harbors several genes responsible for carbohydrate metabolism, cellular process, general stress responses, cofactors, and vitamins, conferring probiotic features. A pangenome analysis indicated the presence of various strain-specific genes encoded for proteins responsible for the defense mechanisms as well as gene encoded for enzymes with biotechnological value, such as penicillin acylase and folates; thus, W. cibaria exhibited high genetic diversity. The genome characterization indicated the presence of a putative CRISPR-Cas array and five prophage regions and the absence of acquired antibiotic resistance genes, virulence, and pathogenic factors; thus, UTNGt21O might be considered a safe strain. Besides, the interaction between the peptide extracts from UTNGt21O and Staphylococcus aureus results in cell death caused by the target cell integrity loss and the release of aromatic molecules from the cytoplasm. The results indicated that W. cibaria UTNGt21O can be considered a beneficial strain to be further exploited for developing novel antimicrobials and probiotic products with improved technological characteristics.
Collapse
Affiliation(s)
- Gabriela N Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Ibarra, Ecuador
| | - Pamela Hurtado
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Ibarra, Ecuador
| |
Collapse
|
8
|
Low DY, Hejndorf S, Tharmabalan RT, Poppema S, Pettersson S. Regional Diets Targeting Gut Microbial Dynamics to Support Prolonged Healthspan. Front Microbiol 2021; 12:659465. [PMID: 33995322 PMCID: PMC8116520 DOI: 10.3389/fmicb.2021.659465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 01/16/2023] Open
Abstract
In the last 150 years, we have seen a significant increase in average life expectancy, associated with a shift from infectious to non-communicable diseases. The rising incidence of these diseases, for which age is often the largest risk factor, highlights the need for contemporary societies to improve healthy ageing for their growing silver generations. As ageing is an inevitable, non-reversing and highly individualised process, we need to better understand how non-genetic factors like diet choices and commensal gut microbes can modulate the biology of ageing. In this review, we discuss how geographical and ethnic variations influence habitual dietary patterns, nutrient structure, and gut microbial profiles with potential impact on the human healthspan. Several gut microbial genera have been associated with healthy elderly populations but are highly variable across populations. It seems unlikely that a universal pro-longevity gut microbiome exists. Rather, the optimal microbiome appears to be conditional on the microbial functionality acting on regional- and ethnicity-specific trends driven by cultural food context. We also highlight dietary and microbial factors that have been observed to elicit individual and clustered biological responses. Finally, we identify next generation avenues to modify otherwise fixed host functions and the individual ageing trajectory by manipulating the malleable gut microbiome with regionally adapted, personalised food intervention regimens targeted at prolonging human healthspan.
Collapse
Affiliation(s)
- Dorrain Yanwen Low
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sophia Hejndorf
- Department of Odontology, Karolinska Institutet, Solna, Sweden
| | | | - Sibrandes Poppema
- School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Sven Pettersson
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Odontology, Karolinska Institutet, Solna, Sweden
- School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
- National Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
9
|
Lammert C, Shin AS, Xu H, Hemmerich C, M O'Connell T, Chalasani N. Short-chain fatty acid and fecal microbiota profiles are linked to fibrosis in primary biliary cholangitis. FEMS Microbiol Lett 2021; 368:6219082. [PMID: 33836051 DOI: 10.1093/femsle/fnab038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota and metabolome could play a role in primary biliary cholangitis (PBC) progression. We aimed to assess fecal microbiota and fecal short-chain fatty acids (SCFAs) in PBC according to fibrosis. In a cross-sectional study of 23 PBC patients, fecal microbiota and SCFAs were determined using 16S rRNA sequencing and nuclear magnetic resonance spectroscopy, respectively. Fecal acetate and SCFAs were higher in advanced fibrosis. Advanced fibrosis microbiota exhibited decreased alpha diversity, increased Weisella and a distinct community composition. SCFAs correlated with individual taxa in non-advanced fibrosis. Fecal microbiota and SCFAs correspond to fibrosis in PBC.
Collapse
Affiliation(s)
- Craig Lammert
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrea S Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Huiping Xu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher Hemmerich
- Center for Genomics and Bioinformatics, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Thomas M O'Connell
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Teixeira CG, Fusieger A, Milião GL, Martins E, Drider D, Nero LA, de Carvalho AF. Weissella: An Emerging Bacterium with Promising Health Benefits. Probiotics Antimicrob Proteins 2021; 13:915-925. [PMID: 33565028 DOI: 10.1007/s12602-021-09751-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/11/2023]
Abstract
Weissella strains have been the subject of much research over the last 5 years because of the genus' technological and probiotic potential. Certain strains have attracted the attention of the pharmaceutical, medical, and food industries because of their ability to produce antimicrobial exopolysaccharides (EPSs). Moreover, Weissella strains are able to keep foodborne pathogens in check because of the bacteriocins, hydrogen peroxide, and organic acids they can produce; all listed have recognized pathogen inhibitory activities. The Weissella genus has also shown potential for treating atopic dermatitis and certain cancers. W. cibaria, W. confusa, and W. paramesenteroides are particularly of note because of their probiotic potential (fermentation of prebiotic fibers) and their ability to survive in the gastrointestinal tract. It is important to note that most of the Weissella strains with these health-promoting properties have been shown to be save safe, due to the absence or the low occurrence of virulence or antibiotic-resistant genes. A large number of scientific studies continue to report on and to support the use of Weissella strains in the food and pharmaceutical industries. This review provides an overview of these studies and draws conclusions for future uses of this rich and previously unexplored genus.
Collapse
Affiliation(s)
- Camila Gonçalves Teixeira
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Andressa Fusieger
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Gustavo Leite Milião
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Evandro Martins
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| |
Collapse
|
11
|
Tenea GN, Hurtado P, Ortega C. A Novel Weissella cibaria Strain UTNGt21O Isolated from Wild Solanum quitoense Fruit: Genome Sequence and Characterization of a Peptide with Highly Inhibitory Potential toward Gram-Negative Bacteria. Foods 2020; 9:E1242. [PMID: 32899506 PMCID: PMC7555684 DOI: 10.3390/foods9091242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/23/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
A novel Weissella cibaria strain UTNGt21O from the fruit of the Solanum quitoense (naranjilla) shrub produces a peptide that inhibits the growth of both Salmonella enterica subsp. enterica ATCC51741 and Escherichia coli ATCC25922 at different stages. A total of 31 contigs were assembled, with a total length of 1,924,087 bases, 20 contig hits match the core genome of different groups within Weissella, while for 11 contigs no match was found in the database. The GT content was 39.53% and the genome repeats sequences constitute around 186,760 bases of the assembly. The UTNGt21O matches the W. cibaria genome with 83% identity and no gaps (0). The sequencing data were deposited in the NCBI Database (BioProject accessions: PRJNA639289). The antibacterial activity and interaction mechanism of the peptide UTNGt21O on target bacteria were investigated by analyzing the growth, integrity, and morphology of the bacterial cells following treatment with different concentrations (1×, 1.5× and 2× MIC) of the peptide applied alone or in combination with chelating agent ethylenediaminetetraacetic acid (EDTA) at 20 mM. The results indicated a bacteriolytic effect at both early and late target growth at 3 h of incubation and total cell death at 6 h when EDTA was co-inoculated with the peptide. Based on BAGEL 4 (Bacteriocin Genome Mining Tool) a putative bacteriocin having 33.4% sequence similarity to enterolysin A was detected within the contig 12. The interaction between the peptide UTNGt21O and the target strains caused permeability in a dose-, time- response manner, with Salmonella (3200 AU/mL) more susceptible than E. coli (6400 AU/mL). The results indicated that UTNGt21O may damage the integrity of the cell target, leading to release of cytoplasmic components followed by cell death. Differences in membrane shape changes in target cells treated with different doses of peptide were observed by transmission electronic microscopy (TEM). Spheroplasts with spherical shapes were detected in Salmonella while larger shaped spheroplasts with thicker and deformed membranes along with filamentous cells were observed in E. coli upon the treatment with the UTNGt21O peptide. These results indicate the promising potential of the putative bacteriocin released by the novel W. cibaria strain UTNGt21O to be further tested as a new antimicrobial substance.
Collapse
Affiliation(s)
- Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Av. 17 de Julio s-21 Barrio El Olivo, 100150 Ibarra, Ecuador; (P.H.); (C.O.)
| | | | | |
Collapse
|