1
|
Trachu N, Reungwetwattana T, Meanwatthana J, Sukasem C, Majam T, Saengsiwaritt W, Jittikoon J, Udomsinprasert W. Leukocytes telomere length as a biomarker of adverse drug reactions induced by Osimertinib in advanced non-small cell lung cancer. Sci Rep 2024; 14:26543. [PMID: 39489788 PMCID: PMC11532503 DOI: 10.1038/s41598-024-77935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
This study aimed to measure relative telomere length (RTL) in blood leukocytes of advanced-stage NSCLC patients either with or without Osimertinib-induced ADRs and determine whether RTL could serve as a biomarker of Osimertinib-induced ADRs. Blood leukocytes RTL were measured in 63 advanced-stage NSCLC patients and 62 age-matched healthy controls using real-time polymerase chain reaction. In patients with advanced-stage NSCLC, RTL was significantly shorter than that in healthy controls (P < 0.001). Compared to patients without ADRs and those with mild/moderate ADRs, patients with severe ADRs exhibited significantly decreased RTL (P < 0.001, P < 0.001, respectively). ROC curve analysis uncovered a diagnostic value of RTL as a biomarker of Osimertinib-induced ADRs (AUC = 1.000, P < 0.001). Kaplan-Meier analysis revealed a significant association between shorter RTL and increased cumulative incidence of Osimertinib-induced ADRs in patients with advanced-stage NSCLC (P < 0.001). Shorter RTL in blood leukocytes would reflect the occurrence of Osimertinib-induced ADRs and might emerge as a promising biomarker for identifying advanced-stage NSCLC patients who are at risk of experiencing Osimertinib-induced ADRs, particularly those with severe ADRs.
Collapse
Affiliation(s)
- Narumol Trachu
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jennis Meanwatthana
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Teerapat Majam
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Wacharapol Saengsiwaritt
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudthaya Road, Rajathevi, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Pourmohamadi N, Pour Abdollah Toutkaboni M, Hayati Roodbari N, Tabarsi P, Baniasadi S. Association of Cytochrome P450 2E1 and N-Acetyltransferase 2 Genotypes with Serum Isoniazid Level and Anti-Tuberculosis Drug-Induced Hepatotoxicity: A Cross-Sectional Study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:474-483. [PMID: 37786472 PMCID: PMC10541540 DOI: 10.30476/ijms.2023.96145.2765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/26/2022] [Accepted: 12/17/2022] [Indexed: 10/04/2023]
Abstract
Background Anti-tuberculosis drug-induced hepatotoxicity can result from genetic polymorphism of the isoniazid (INH) metabolizing enzyme. This study aimed to determine the effect of genetic polymorphism of N-acetyltransferase 2 (NAT2) and cytochrome P450 2E1 (CYP2E1) genes on serum isoniazid level and drug-induced hepatotoxicity. Methods A cross-sectional study was conducted on 120 patients (with and without hepatotoxicity) with pulmonary tuberculosis from June 2019 to April 2022 in Tehran (Iran). High-performance liquid chromatography was used to measure the serum concentration of INH and acetylisoniazid (AcINH). NAT2 and CYP2E1 genotypes were determined using polymerase chain reaction and restriction fragment length polymorphism methods. Data were analyzed using SPSS software (version 22.0) with independent two-sample t test, Chi square test, or Fisher's exact test. P<0.05 was considered statistically significant. Results A total of 40 patients showed hepatotoxicity. The risk of anti-tuberculosis drug-induced hepatotoxicity was significantly higher in patients who are slow acetylator (SA) phenotype than in rapid or intermediate acetylator (P<0.001). NAT2*4/*4 genotypes were not found in patients with hepatotoxicity. The frequency of NAT2*5 and NAT2*6 haplotypes and serum INH concentration was significantly higher in patients with hepatotoxicity than in those without (P=0.003, P<0.001, and P<0.001, respectively). NAT2*4 haplotype was correlated with protection against hepatotoxicity. A combination of SA and CYP2E1 C1/C1 genotype was significantly associated with hepatotoxicity (P<0.001). Conclusion Hepatotoxicity in Iranian patients with tuberculosis was confirmed due to the presence of NAT2 SA polymorphism. Determining NAT2 and CYP2E1 genotypes and/or INH concentration can be a valuable tool to identify patients susceptible to hepatotoxicity.
Collapse
Affiliation(s)
- Nasir Pourmohamadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mihan Pour Abdollah Toutkaboni
- Molecular Medicine Laboratory, Department of Pathology, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Baniasadi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Women's fertility decay starts at the mid 30 s. However, the current delay of childbearing leads to ovarian aging and the need of assisted reproduction technologies (ART). Telomere biology is one of the main pathways involved in organismal aging. Thus, this review will focus on the knowledge acquired during the last 2 years about the telomere pathway and its influence on female fertility and the consequences for the newborn. RECENT FINDINGS New research on telomere biology reaffirms the relationship of telomere attrition and female infertility. Shorter maternal telomeres, which could be aggravated by external factors, underly premature ovarian aging and other complications including preeclampsia, preterm birth and idiopathic pregnancy loss. Finally, the telomere length of the fetus or the newborn is also affected by external factors, such as stress and nutrition. SUMMARY Recent evidence shows that telomeres are implicated in most processes related to female fertility, embryo development and the newborn's health. Thus, telomere length and telomerase activity may be good biomarkers for early detection of ovarian and pregnancy failures, opening the possibility to use telomere therapies to try to solve the infertility situation.
Collapse
|
4
|
Liu W, Wang N, Zhu J, Zhang M, Lu L, Pan H, He X, Yi H, Tang S. The relationship between relative telomere length and anti-tuberculosis drug-induced hepatitis : A case-control study. Therapie 2022; 78:259-266. [DOI: 10.1016/j.therap.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
|
5
|
Ruiz A, Flores-Gonzalez J, Buendia-Roldan I, Chavez-Galan L. Telomere Shortening and Its Association with Cell Dysfunction in Lung Diseases. Int J Mol Sci 2021; 23:425. [PMID: 35008850 PMCID: PMC8745057 DOI: 10.3390/ijms23010425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Telomeres are localized at the end of chromosomes to provide genome stability; however, the telomere length tends to be shortened with each cell division inducing a progressive telomere shortening (TS). In addition to age, other factors, such as exposure to pollutants, diet, stress, and disruptions in the shelterin protein complex or genes associated with telomerase induce TS. This phenomenon favors cellular senescence and genotoxic stress, which increases the risk of the development and progression of lung diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, SARS-CoV-2 infection, and lung cancer. In an infectious environment, immune cells that exhibit TS are associated with severe lymphopenia and death, whereas in a noninfectious context, naïve T cells that exhibit TS are related to cancer progression and enhanced inflammatory processes. In this review, we discuss how TS modifies the function of the immune system cells, making them inefficient in maintaining homeostasis in the lung. Finally, we discuss the advances in drug and gene therapy for lung diseases where TS could be used as a target for future treatments.
Collapse
Affiliation(s)
| | | | | | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (A.R.); (J.F.-G.); (I.B.-R.)
| |
Collapse
|
6
|
Freimane L, Barkane L, Igumnova V, Kivrane A, Zole E, Ranka R. Telomere length and mitochondrial DNA copy number in multidrug-resistant tuberculosis. Tuberculosis (Edinb) 2021; 131:102144. [PMID: 34781086 DOI: 10.1016/j.tube.2021.102144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022]
Abstract
Multidrug resistant tuberculosis (MDR-TB) is a severe disease that requires prolonged chemotherapy and is associated with an increased probability of treatment failure and death. MDR-TB is a state of heightened oxidative stress and inflammation, which could be related to the aging-related processes and immunosenescence. We, therefore, tested the hypothesis that MDR-TB is associated with alterations in aging biomarkers in peripheral blood cells. We investigated 51 MDR-TB patients and 57 healthy individuals and carried out an analysis of covariance to assess the possible impact of different variables on biomarker perturbations. The results showed that MDR-TB patients had significantly reduced telomere length (TL) and increased mitochondrial DNA copy number (mtDNA CN) (P < 0.05) in comparison to the controls, and MDR-TB infection was the main influencing factor. Male sex and extrapulmonary TB strongly influenced mtDNA CN increment, and MDR-TB patients with normal weight had longer telomeres than those who were underweight (P < 0.05). In conclusion, the evidence for shorter telomeres and higher mtDNA CN in the peripheral blood cells of MDR-TB patients was obtained indicating the connection between MDR-TB and aging biomarkers. The observed associations highlight a complicated interplay between MDR-TB and immunosenescence, thus further studies are required to achieve full understanding.
Collapse
Affiliation(s)
- Lauma Freimane
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia; Riga Stradins University, Dzirciema Street 16, Riga, LV1007, Latvia
| | - Linda Barkane
- Riga Stradins University, Dzirciema Street 16, Riga, LV1007, Latvia; Riga East University Hospital, Centre of Tuberculosis and Lung Diseases, Stopini Region, Upeslejas, LV2118, Latvia
| | - Viktorija Igumnova
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia
| | - Agnija Kivrane
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia
| | - Egija Zole
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia
| | - Renate Ranka
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia; Riga Stradins University, Dzirciema Street 16, Riga, LV1007, Latvia.
| |
Collapse
|
7
|
Clinton JW, Kiparizoska S, Aggarwal S, Woo S, Davis W, Lewis JH. Drug-Induced Liver Injury: Highlights and Controversies in the Recent Literature. Drug Saf 2021; 44:1125-1149. [PMID: 34533782 PMCID: PMC8447115 DOI: 10.1007/s40264-021-01109-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) remains an important, yet challenging diagnosis for physicians. Each year, additional drugs are implicated in DILI and this year was no different, with more than 1400 articles published on the subject. This review examines some of the most significant highlights and controversies in DILI-related research over the past year and their implications for clinical practice. Several new drugs were approved by the US Food and Drug Administration including a number of drugs implicated in causing DILI, particularly among the chemotherapeutic classes. The COVID-19 pandemic was also a major focus of attention in 2020 and we discuss some of the notable aspects of COVID-19-related liver injury and its implications for diagnosing DILI. Updates in diagnostic and causality assessments related to DILI such as the Roussel Uclaf Causality Assessment Method are included, mindful that there is still no single biomarker or diagnostic tool to unequivocally diagnose DILI. Glutamate dehydrogenase received renewed attention as being more specific than alanine aminotransferase. There were a few new reports of previously unrecognized hepatotoxins, including immune modulators and novel gene therapy drugs that we highlight. Updates and new developments of previously described hepatotoxins, such as immune checkpoint inhibitors and anti-tuberculosis drugs are reviewed. Finally, novel technologies such as organoid culture systems to better predict DILI preclinically may be coming of age and determinants of hepatocyte loss, such as calculating PALT are poised to improve our current means of estimating DILI severity and the risk of acute liver failure.
Collapse
Affiliation(s)
- Joseph William Clinton
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA.
| | - Sara Kiparizoska
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Soorya Aggarwal
- Division of Gastroenterology and Hepatology, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Stephanie Woo
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - William Davis
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - James H Lewis
- Division of Gastroenterology and Hepatology, Medstar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
8
|
García-García C, Shin C, Baik I. Association between body temperature and leukocyte telomere length in Korean middle-aged and older adults. Epidemiol Health 2021; 43:e2021063. [PMID: 34525499 PMCID: PMC8629693 DOI: 10.4178/epih.e2021063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Data on associations between body temperature (BT) and leukocyte telomere length (LTL), which has been widely used as a biomarker of cellular senescence in recent epidemiological studies, are limited. Therefore, this study aimed to explore the associations between a normal BT range (35.0-37.5°C) and LTL via 6-year longitudinal observations of 2,004 male and female adults aged 50 or older. METHODS BT was obtained by measuring the tympanic temperature, and relative LTL was determined by real-time polymerase chain reaction. Robust regression analysis was used to evaluate the association between the baseline and follow-up LTL values and their differences. RESULTS A significant inverse association was found between BT and LTL at baseline. The regression coefficient estimate was -0.03 (95% confidence interval, -0.07 to -0.001; p<0.05). This association was stronger in participants with a body mass index >25 kg/m2 and males (p<0.01). However, there were no associations between BT and LTL at follow-up or BT and 6-year longitudinal differences in LTL. CONCLUSIONS These findings suggest that having a high BT between 35°C and 37.5°C (95°F and 99°F) may be detrimental for obese individuals in terms of biological aging.
Collapse
Affiliation(s)
- Carolina García-García
- Department of Foods and Nutrition, College of Natural Sciences, Kookmin University, Seoul, Korea
| | - Chol Shin
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Inkyung Baik
- Department of Foods and Nutrition, College of Natural Sciences, Kookmin University, Seoul, Korea
| |
Collapse
|
9
|
Katoto PDMC, Kayembe-Kitenge T, Pollitt KJG, Martens DS, Ghosh M, Nachega JB, Nemery B, Nawrot TS. Telomere length and outcome of treatment for pulmonary tuberculosis in a gold mining community. Sci Rep 2021; 11:4031. [PMID: 33597559 PMCID: PMC7889934 DOI: 10.1038/s41598-021-83281-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Telomere length (TL) is a marker of ageing and mitochondrial DNA (mtDNA) is an early marker of inflammation caused by oxidative stress. We determined TL and mtDNA content among active pulmonary tuberculosis (PTB) patients to assess if these cellular biomarkers differed between artisanal miners and non-miners, and to assess if they were predictive of treatment outcome. We conducted a prospective cohort study from August 2018 to May 2019 involving newly diagnosed PTB patients at three outpatient TB clinics in a rural Democratic Republic of Congo. We measured relative TL and mtDNA content in peripheral blood leukocytes (at inclusion) via qPCR and assessed their association with PTB treatment outcome. We included 129 patients (85 miners and 44 non-miners) with PTB (median age 40 years; range 5-71 years, 22% HIV-coinfected). For each increase in year and HIV-coinfection, TL shortened by - 0.85% (- 0.19 to - 0.52) (p ≤ 0.0001) and - 14% (- 28.22 to - 1.79) (p = 0.02) respectively. Independent of these covariates, patients with longer TL were more likely to have successful TB treatment [adjusted hazard ratio; 95% CI 1.27 for a doubling of leucocyte telomere length at baseline; 1.05-1.44] than patients with a shorter TL. Blood mtDNA content was not predictive for PTB outcome. For a given chronological age, PTB patients with longer telomeres at time of diagnosis were more likely to have successful PTB treatment outcome.
Collapse
Affiliation(s)
- Patrick D M C Katoto
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium.
- Department of Internal Medicine, Division of Respiratory Medicine, CEGEMI and Prof. Lurhuma Biomedical Research Laboratory, Mycobacterium Unit, Catholic University of Bukavu, Bukavu, Democratic Republic of Congo.
- Department of Medicine and Center for Infectious Diseases, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Tony Kayembe-Kitenge
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
- Department of Public Health, Unit of Toxicology, University of Lubumbashi, Lubumbashi, Democratic Republic of Congo
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, USA
| | - Dries S Martens
- Centre of Environmental Health, University of Hasselt, Agoralaan gebouw D, 3590, Diepenbeek, Belgium
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Jean B Nachega
- Department of Medicine and Center for Infectious Diseases, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Departments of Epidemiology and International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Epidemiology, Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Benoit Nemery
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Tim S Nawrot
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium.
- Centre of Environmental Health, University of Hasselt, Agoralaan gebouw D, 3590, Diepenbeek, Belgium.
| |
Collapse
|