1
|
Wang S, Zhan C, Chen R, Li W, Song H, Zhao G, Wen M, Liang D, Qiao J. Achievements and perspectives of synthetic biology in botanical insecticides. J Cell Physiol 2024; 239:e30888. [PMID: 36183373 DOI: 10.1002/jcp.30888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Botanical insecticides are the origin of all insecticidal compounds. They have been widely used to control pests in crops for a long time. Currently, the commercial production of botanical insecticides extracted from plants is limited because of insufficient raw material supply. Synthetic biology is a promising and effective approach for addressing the current problems of the production of botanical insecticides. It is an emerging biological research hotspot in the field of botanical insecticides. However, the biosynthetic pathways of many botanical insecticides are not completely elucidated. On the other hand, the cytotoxicity of botanical pesticides and low efficiency of these biosynthetic enzymes in new hosts make it still challenging for their heterologous production. In the present review, we summarized the recent developments in the heterologous production of botanical insecticides, analyzed the current challenges, and discussed the feasible production strategies, focusing on elucidating biosynthetic pathways, enzyme engineering, host engineering, and cytotoxicity engineering. Looking to the future, synthetic biology promises to further advance heterologous production of more botanical pesticides.
Collapse
Affiliation(s)
- Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Chuanling Zhan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Weiguo Li
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Hongjian Song
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Mingzhang Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Dongmei Liang
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| |
Collapse
|
2
|
Matsuda K. Understanding pyrethrin biosynthesis: toward and beyond natural pesticide overproduction. Biochem Soc Trans 2024; 52:1927-1937. [PMID: 39136197 DOI: 10.1042/bst20240213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Pyrethrins are natural insecticides biosynthesised by Asteraceae plants, such as Tanacetum cinerariifolium and have a long history, dating back to ancient times. Pyrethrins are often used as low-persistence and safe insecticides to control household, horticultural, and agricultural insect pests. Despite its long history of use, pyrethrin biosynthesis remains a mystery, presenting a significant opportunity to improve yields and meet the growing demand for organic agriculture. To achieve this, both genetic modification and non-genetic methods, such as chemical activation and priming, are indispensable. Plants use pyrethrins as a defence against herbivores, but pyrethrin biosynthesis pathways are shared with plant hormones and signal molecules. Hence, the insight that pyrethrins may play broader roles than those traditionally expected is invaluable to advance the basic and applied sciences of pyrethrins.
Collapse
Affiliation(s)
- Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
3
|
Inoue S, Tsuzuki H, Matsuda K, Kitaoka N, Matsuura H. Investigation Of The Biosynthesis Pathway That Generates cis-Jasmone. Chembiochem 2024; 25:e202300593. [PMID: 37934005 DOI: 10.1002/cbic.202300593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/29/2023] [Indexed: 11/08/2023]
Abstract
Researchers have established that (+)-7-iso-jasmonic acid ((+)-7-iso-JA) is an intermediate in the production of cis-jasmone (CJ); however, the biosynthetic pathway of CJ has not been fully described. Previous reports stated that CJ, a substructure of pyrethrin II produced by pyrethrum (Tanacetum cinerariifolium), is not biosynthesized through this biosynthetic pathway. To clarify the ambiguity, stable isotope-labelled jasmonates were synthesized, and compounds were applied to apple mint (Mentha suaveolens) via air propagation. The results showed that cis-jasmone is not generated from intermediate (+)-7-iso-JA, and (+)-7-iso-JA is not produced from 3,7-dideydro-JA (3,7-ddh-JA); however, 3,7-didehydro-JA and 4,5-didehydro-7-iso-JA were converted into CJ and JA, respectively.
Collapse
Affiliation(s)
- Shiro Inoue
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Hiromu Tsuzuki
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Kazuhiko Matsuda
- Graduate School of Agriculture, Faculty of Agriculture, Kinki University Nakamachi, Nara, 631-8505, Japan
| | - Naoki Kitaoka
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| |
Collapse
|
4
|
Zeng T, Yu Q, Shang J, Xu Z, Zhou L, Li W, Li J, Hu H, Zhu L, Li J, Wang C. TcbHLH14 a Jasmonate Associated MYC2-like Transcription Factor Positively Regulates Pyrethrin Biosynthesis in Tanacetum cinerariifolium. Int J Mol Sci 2023; 24:ijms24087379. [PMID: 37108541 PMCID: PMC10138541 DOI: 10.3390/ijms24087379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Natural pyrethrins have high application value, and are widely used as a green pesticide in crop pest prevention and control. Pyrethrins are mainly extracted from the flower heads of Tanacetum cinerariifolium; however, the natural content is low. Therefore, it is essential to understand the regulatory mechanisms underlying the synthesis of pyrethrins through identification of key transcription factors. We identified a gene encoding a MYC2-like transcription factor named TcbHLH14 from T. cinerariifolium transcriptome, which is induced by methyl jasmonate. In the present study, we evaluated the regulatory effects and mechanisms of TcbHLH14 using expression analysis, a yeast one-hybrid assay, electrophoretic mobility shift assay, and overexpression/virus-induced gene silencing experiments. We found that TcbHLH14 can directly bind to the cis-elements of the pyrethrins synthesis genes TcAOC and TcGLIP to activate their expression. The transient overexpression of TcbHLH14 enhanced expression of the TcAOC and TcGLIP genes. Conversely, transient silencing of TcbHLH14 downregulated the expression of TcAOC and TcGLIP and reduced the content of pyrethrins. In summary, these results indicate that the potential application of TcbHLH14 in improving the germplasm resources and provide a new insight into the regulatory network of pyrethrins biosynthesis of T. cinerariifolium to further inform the development of engineering strategies for increasing pyrethrins contents.
Collapse
Affiliation(s)
- Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Junzhong Shang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhizhuo Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Jinjin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liyong Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawen Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Sugisaka Y, Aoyama S, Kumagai K, Ihara M, Matsuda K. TcGLIP GDSL Lipase Substrate Specificity Co-determines the Pyrethrin Composition in Tanacetum cinerariifolium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8645-8652. [PMID: 35793553 PMCID: PMC9306000 DOI: 10.1021/acs.jafc.2c02365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural pesticides pyrethrins biosynthesized by Tanacetum cinrerariifolium are biodegradable and safer insecticides for pest insect control. TcGLIP, a GDSL lipase underpinning the ester bond formation in pyrethrins, exhibits high stereo-specificity for acyl-CoA and alcohol substrates. However, it is unknown how the enzyme recognizes the other structural features of the substrates and whether such specificity affects the product amount and composition in T. cinrerariifolium. We report here that the cysteamine moiety in (1R,3R)-chrysanthemoyl CoA and the conjugated diene moiety in (S)-pyrethrolone play key roles in the interactions with TcGLIP. CoA released from chrysanthemoyl CoA in the pyrethrin-forming reaction reduces the substrate affinity for TcGLIP by feedback inhibition. (S)-Pyrethrolone shows the highest catalytic efficiency for TcGLIP, followed by (S)-cinerolone and (S)-jasmololone, contributing, at least in part, to determine the pyrethrin compositions in T. cinerariifolium.
Collapse
Affiliation(s)
- Yukimi Sugisaka
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Shiori Aoyama
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Konoka Kumagai
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Makoto Ihara
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kazuhiko Matsuda
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Agricultural
Technology and Innovation Research Institute, Kindai University, 3327-204
Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
6
|
Wang Y, Wen J, Liu L, Chen J, Wang C, Li Z, Wang G, Pichersky E, Xu H. Engineering of tomato type VI glandular trichomes for trans-chrysanthemic acid biosynthesis, the acid moiety of natural pyrethrin insecticides. Metab Eng 2022; 72:188-199. [PMID: 35339691 DOI: 10.1016/j.ymben.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Glandular trichomes, known as metabolic cell factories, have been proposed as highly suitable for metabolically engineering the production of plant high-value specialized metabolites. Natural pyrethrins, found only in Dalmatian pyrethrum (Tanacetum cinerariifolium), are insecticides with low mammalian toxicity and short environmental persistence. Type I pyrethrins are esters of the monoterpenoid trans-chrysanthemic acid with one of the three rethrolone-type alcohols. To test if glandular trichomes can be made to synthesize trans-chrysanthemic acid, we reconstructed its biosynthetic pathway in tomato type VI glandular trichomes, which produce large amounts of terpenoids that share the precursor dimethylallyl diphosphate (DMAPP) with this acid. This was achieved by coexpressing the trans-chrysanthemic acid pathway related genes including TcCDS encoding chrysanthemyl diphosphate synthase and the fusion gene of TcADH2 encoding the alcohol dehydrogenase 2 linked with TcALDH1 encoding the aldehyde dehydrogenase 1 under the control of a newly identified type VI glandular trichome-specific metallocarboxypeptidase inhibitor promoter. Whole tomato leaves harboring type VI glandular trichomes expressing all three aformentioned genes had a concentration of total trans-chrysanthemic acid that was about 1.5-fold higher (by mole number) than the levels of β-phellandrene, the dominant monoterpene present in non-transgenic leaves, while the levels of β-phellandrene and the representative sesquiterpene β-caryophyllene in transgenic leaves were reduced by 96% and 81%, respectively. These results suggest that the tomato type VI glandular trichome is an alternative platform for the biosynthesis of trans-chrysanthemic acid by metabolic engineering.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Jing Wen
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Lang Liu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Chu Wang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Haiyang Xu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
7
|
Matsuda K. Chemical and biological studies of natural and synthetic products for the highly selective control of pest insect species. Biosci Biotechnol Biochem 2021; 86:1-11. [PMID: 34694357 DOI: 10.1093/bbb/zbab187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/17/2021] [Indexed: 11/12/2022]
Abstract
Tanacetum cinerariifolium was known to produce pyrethrins, but the mechanism of pyrethrin biosynthesis was largely unclear. The author showed that the nonmevalonate and oxylipin pathways underlie biosynthesis of the acid and alcohol moieties, respectively, and a GDSL lipase joins the products of these pathways. A blend of the green leaf volatiles and (E)-β-farnesene mediates the induction of wounding responses to neighboring intact conspecies by enhancing pyrethrin biosynthesis. Plants fight against herbivores underground as well as aboveground, and, in soy pulps, some fungi produce compounds selectively modulating ion channels in insect nervous system. The author proposed that indirect defense of plants occurs where microorganisms produce defense substances in the rhizosphere. Broad-spectrum pesticides, including neonicotinoids, may affect nontarget organisms. The author discovered cofactors enabling functional expression of insect nicotinic acetylcholine receptors (nAChRs). This led to understanding the mechanism of insect nAChR-neonicotinoid interactions, thus paving new avenues for controlling crop pests and disease vectors.
Collapse
Affiliation(s)
- Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
8
|
Miyawaki K, Inoue S, Kitaoka N, Matsuura H. Potato tuber-inducing activities of jasmonic acid and related-compounds (II). Biosci Biotechnol Biochem 2021; 85:2378-2382. [PMID: 34726243 DOI: 10.1093/bbb/zbab161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/08/2021] [Indexed: 11/12/2022]
Abstract
New information is being accumulated for plant-derived oxylipins, such as jasmonic acid (JA) amino acid conjugates. However, these compounds have not being examined for their activity in promoting potato tuber formation. It was found that (-)-JA had the highest activity followed cis-(-)-OPDA, (+)-4, 5-didehydroJA, cis-(+)-OPDA-l-Ile, and (-)-JA-l-Ile, -Leu, -Phe, -Val, although iso-OPDA and 3,7-didehydroJA did not exhibit activity.
Collapse
Affiliation(s)
- Kanji Miyawaki
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shiro Inoue
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Naoki Kitaoka
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hideyuki Matsuura
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Lybrand DB, Xu H, Last RL, Pichersky E. How Plants Synthesize Pyrethrins: Safe and Biodegradable Insecticides. TRENDS IN PLANT SCIENCE 2020; 25:1240-1251. [PMID: 32690362 PMCID: PMC7677217 DOI: 10.1016/j.tplants.2020.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 05/04/2023]
Abstract
Natural pyrethrin insecticides produced by Dalmatian pyrethrum (Tanacetum cinerariifolium) have low mammalian toxicity and short environmental persistence, providing an alternative to widely used synthetic agricultural insecticides that pose a threat to human health and the environment. A recent surge of interest in the use of pyrethrins as agricultural insecticides coincides with the discovery of several new genes in the pyrethrin biosynthetic pathway. Elucidation of this pathway facilitates efforts to breed improved pyrethrum varieties and to engineer plants with improved endogenous defenses or hosts for heterologous pyrethrin production. We describe the current state of knowledge related to global pyrethrum production, the pyrethrin biosynthetic pathway and its regulation, and recent efforts to engineer the pyrethrin pathway in diverse plant hosts.
Collapse
Affiliation(s)
- Daniel B Lybrand
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Haiyang Xu
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|