1
|
Metcalf GAD. MicroRNAs: circulating biomarkers for the early detection of imperceptible cancers via biosensor and machine-learning advances. Oncogene 2024; 43:2135-2142. [PMID: 38839942 PMCID: PMC11226400 DOI: 10.1038/s41388-024-03076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
This review explores the topic of microRNAs (miRNAs) for improved early detection of imperceptible cancers, with potential to advance precision medicine and improve patient outcomes. Historical research exploring miRNA's role in cancer detection collectively revealed initial hurdles in identifying specific miRNA signatures for early-stage and difficult-to-detect cancers. Early studies faced challenges in establishing robust biomarker panels and overcoming the heterogeneity of cancer types. Despite this, recent developments have supported the potential of miRNAs as sensitive and specific biomarkers for early cancer detection as well as having demonstrated remarkable potential as diagnostic tools for imperceptible cancers, such as those with elusive symptoms or challenging diagnostic criteria. This review discusses the advent of high-throughput technologies that have enabled comprehensive detection and profiling of unique miRNA signatures associated with early-stage cancers. Furthermore, advancements in bioinformatics and machine-learning techniques are considered, exploring the integration of multi-omics data which have potential to enhance both the accuracy and reliability of miRNA-based cancer detection assays. Finally, perspectives on the continuing development on technologies as well as discussion around challenges that remain, such as the need for standardised protocols and addressing the complex interplay of miRNAs in cancer biology are conferred.
Collapse
Affiliation(s)
- Gavin A D Metcalf
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK.
| |
Collapse
|
2
|
Ueki Y, Häner JD, Losdat S, Gargiulo G, Shibutani H, Bär S, Otsuka T, Kavaliauskaite R, Mitter VR, Temperli F, Spirk D, Stortecky S, Siontis GCM, Valgimigli M, Windecker S, Gutmann C, Koskinas KC, Mayr M, Räber L. Effect of Alirocumab Added to High-Intensity Statin on Platelet Reactivity and Noncoding RNAs in Patients with AMI: A Substudy of the PACMAN-AMI Trial. Thromb Haemost 2024; 124:517-527. [PMID: 37595625 DOI: 10.1055/a-2156-7872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
OBJECTIVE The effect of the PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitor alirocumab on platelet aggregation among patients with acute myocardial infarction (AMI) remains unknown. We aimed to explore the effect of alirocumab added to high-intensity statin therapy on P2Y12 reaction unit (PRU) among AMI patients receiving dual antiplatelet therapy (DAPT) with a potent P2Y12 inhibitor (ticagrelor or prasugrel). In addition, we assessed circulating platelet-derived noncoding RNAs (microRNAs and YRNAs). METHODS This was a prespecified, powered, pharmacodynamic substudy of the PACMAN trial, a randomized, double-blind trial comparing biweekly alirocumab (150 mg) versus placebo in AMI patients undergoing percutaneous coronary intervention. Patients recruited at Bern University Hospital, receiving DAPT with a potent P2Y12 inhibitor, and adherent to the study drug (alirocumab or placebo) were analyzed for the current study. The primary endpoint was PRU at 4 weeks after study drug initiation as assessed by VerifyNow P2Y12 point-of-care assays. RESULTS Among 139 randomized patients, the majority of patients received ticagrelor DAPT at 4 weeks (57 [86.4%] in the alirocumab group vs. 69 [94.5%] in the placebo group, p = 0.14). There were no significant differences in the primary endpoint PRU at 4 weeks between groups (12.5 [interquartile range, IQR: 27.0] vs. 19.0 [IQR: 30.0], p = 0.26). Consistent results were observed in 126 patients treated with ticagrelor (13.0 [IQR: 20.0] vs. 18.0 [IQR: 27.0], p = 0.28). Similarly, platelet-derived noncoding RNAs did not significantly differ between groups. CONCLUSION Among AMI patients receiving DAPT with a potent P2Y12 inhibitor, alirocumab had no significant effect on platelet reactivity as assessed by PRU and platelet-derived noncoding RNAs.
Collapse
Affiliation(s)
- Yasushi Ueki
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jonas D Häner
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Giuseppe Gargiulo
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Hiroki Shibutani
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sarah Bär
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tatsuhiko Otsuka
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raminta Kavaliauskaite
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vera R Mitter
- Institute of Hospital Pharmacy, Bern University Hospital, Bern, Switzerland
| | - Fabrice Temperli
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Spirk
- Department of Pharmacology, Bern University, Bern and Sanofi, Switzerland
| | - Stefan Stortecky
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - George C M Siontis
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Valgimigli
- Cardiocentro Ticino, Institute and Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Clemens Gutmann
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
- Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Manuel Mayr
- Cardiocentro Ticino, Institute and Università della Svizzera Italiana (USI), Lugano, Switzerland
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Pedersen OB, Hvas AM, Pasalic L, Kristensen SD, Grove EL, Nissen PH. Platelet Function and Maturity and Related microRNA Expression in Whole Blood in Patients with ST-Segment Elevation Myocardial Infarction. Thromb Haemost 2024; 124:192-202. [PMID: 37846463 DOI: 10.1055/s-0043-1776305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
BACKGROUND Reduced effect of antiplatelet therapy has been reported in patients with ST-segment elevation myocardial infarction (STEMI). MicroRNAs (miRs) may influence platelet function and maturity, and subsequently the effect of antiplatelet therapy. OBJECTIVES We aimed to explore the association between miR expression and platelet function and maturity in patients with acute STEMI and healthy individuals. METHODS We performed an observational study of STEMI patients admitted directly to primary percutaneous coronary intervention. Patients were treated with antiplatelet therapy according to guidelines. Within 24 hours after admission, blood samples were obtained to measure: the expression of 10 candidate miRs, platelet function markers using advanced flow cytometry, platelet aggregation, serum thromboxane B2, and platelet maturity markers. Furthermore, blood samples from healthy individuals were obtained to determine the normal variation. RESULTS In total, 61 STEMI patients and 50 healthy individuals were included. STEMI patients had higher expression of miR-21-5p, miR-26b-5p, and miR-223-3p and lower expression of miR-150-5p, miR423-5p, and miR-1180-3p than healthy individuals. In STEMI patients, the expression of miR-26b-5p showed the most consistent association with platelet function (all p-values <0.05, Spearman's rho ranging from 0.27 to 0.41), while the expression of miR-150-5p and miR-223-3p showed negative associations with platelet function. No association between miR expression and platelet maturity markers was observed. CONCLUSION In patients with STEMI, the expression of six miRs was significantly different from healthy individuals. The expression of miR-26b-5p may affect platelet function in acute STEMI patients and potentially influence the effect of antiplatelet therapy.
Collapse
Affiliation(s)
- Oliver Buchhave Pedersen
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | | | - Leonardo Pasalic
- Institute of Clinical Pathology and Medical Research, Westmead Hospital, NSW Health Pathology, Sydney, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Steen Dalby Kristensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Erik Lerkevang Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter H Nissen
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Nardin M, Verdoia M, Cao D, Nardin S, Kedhi E, Galasso G, van ‘t Hof AWJ, Condorelli G, De Luca G. Platelets and the Atherosclerotic Process: An Overview of New Markers of Platelet Activation and Reactivity, and Their Implications in Primary and Secondary Prevention. J Clin Med 2023; 12:6074. [PMID: 37763014 PMCID: PMC10531614 DOI: 10.3390/jcm12186074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The key role played by platelets in the atherosclerosis physiopathology, especially in the acute setting, is ascertained: they are the main actors during thrombus formation and, thus, one of the major investigated elements related to atherothrombotic process involving coronary arteries. Platelets have been studied from different points of view, according with the technology advances and the improvement in the hemostasis knowledge achieved in the last years. Morphology and reactivity constitute the first aspects investigated related to platelets with a significant body of evidence published linking a number of their values and markers to coronary artery disease and cardiovascular events. Recently, the impact of genetics on platelet activation has been explored with promising findings as additional instrument for patient risk stratification; however, this deserves further confirmations. Moreover, the interplay between immune system and platelets has been partially elucidated in the last years, providing intriguing elements that will be basic components for future research to better understand platelet regulation and improve cardiovascular outcome of patients.
Collapse
Affiliation(s)
- Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Third Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Monica Verdoia
- Division of Cardiology, Ospedale degli Infermi, ASL Biella, 13875 Biella, Italy
- Department of Translational Medicine, Eastern Piedmont University, 28100 Novara, Italy
| | - Davide Cao
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiology, Humanitas Gavazzeni Hospital, 24125 Bergamo, Italy
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Elvin Kedhi
- Division of Cardiology, Hopital Erasmus, Universitè Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Gennaro Galasso
- Division of Cardiology, Ospedale Ruggi D’Aragona, Università di Salerno, 84084 Salerno, Italy
| | - Arnoud W. J. van ‘t Hof
- Department of Cardiology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), 6229 ER Maastricht, The Netherlands
- Department of Cardiology, Zuyderland Medical Center, 6419 PC Heerlen, The Netherlands
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiovascular Medicine, IRCCS-Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Giuseppe De Luca
- Division of Cardiology, AOU “Policlinico G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
- Division of Cardiology, IRCCS Hospital Galeazzi-Sant’Ambrogio, 20157 Milan, Italy
| |
Collapse
|
5
|
Eyileten C, Wicik Z, Keshwani D, Aziz F, Aberer F, Pferschy PN, Tripolt NJ, Sourij C, Prietl B, Prüller F, von Lewinski D, De Rosa S, Siller-Matula JM, Postula M, Sourij H. Alteration of circulating platelet-related and diabetes-related microRNAs in individuals with type 2 diabetes mellitus: a stepwise hypoglycaemic clamp study. Cardiovasc Diabetol 2022; 21:79. [PMID: 35596173 PMCID: PMC9123651 DOI: 10.1186/s12933-022-01517-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In patients with type 2 diabetes mellitus (T2DM) an association between severe hypoglycaemic episodes and the risk of cardiovascular (CV) morbidity and mortality has been previously established. METHODS We aimed to investigate the influence of hypoglycaemia on several diabetes-related and platelet-related miRNAs selected based on bioinformatic analysis and literature search, including hsa-miR-16, hsa-miR-34a, hsa-miR-129-2, hsa-miR-15a, hsa-miR-15b, hsa-miR-106a, miR-223, miR-126. Selected miRNAs were validated by qRT-PCR in 14 patients with T2DM on metformin monotherapy, without established CV disease and antiplatelet therapy during a stepwise hypoglycaemic clamp experiment and a follow-up 7 days after the clamp event. In order to identify which pathways and phenotypes are associated with validated miRNAs we performed target prediction on genes expressed with high confidence in platelets. RESULTS Circulating levels of miR-106a-5p, miR-15b, miR-15a, miR-16-5p, miR-223 and miR-126 were increased after euglycaemic clamp followed by hypoglycaemic clamp, each with its distinctive time trend. On the contrary, miR-129-2-3p, miR-92a-3p and miR-34a-3p remained unchanged. MiR-16-5p was negatively correlated with interleukin (IL)-6, intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) (p = 0.002, p < 0.001, p = 0.016, respectively), whereas miR-126 was positively correlated with VCAM (p < 0.001). There were negative correlations between miR-16-5p, miR-126 and coagulation factors, including factor VIII and von Willebrand factor (vWF). Among all studied miRNAs, miR-126, miR-129-2-3p and miR-15b showed correlation with platelet function. Bioinformatic analysis of platelet-related targets of analyzed miRNAs showed strong enrichment of IL-2 signaling. We also observed significant enrichment of pathways and diseases related to cancer, CV diseases, hyperglycemia, and neurological diseases. CONCLUSIONS Hypoglycaemia can significantly influence the expression of platelet-enriched miRNAs, with a time trend paralleling the time course of platelet activation. This suggests miRNAs could be exploited as biomarkers for platelet activation in response to hypoglycaemia, as they are probably released by platelets upon activation by hypoglycaemic episodes. Should they hold their promise in clinical endpoint studies, platelet-derived miRNAs might become helpful markers of CV risk in subjects with diabetes. Trial registration The study was registered at clinical trials.gov; Impact of Hypoglycaemia in Patients With DIAbetes Mellitus Type 2 on PLATElet Activation (Diaplate), trial number: NCT03460899.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.,Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland
| | - Disha Keshwani
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland
| | - Faisal Aziz
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Felix Aberer
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Peter N Pferschy
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Norbert J Tripolt
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Caren Sourij
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Prietl
- Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Circulating and Platelet MicroRNAs in Cardiovascular Risk Assessment and Antiplatelet Therapy Monitoring. J Clin Med 2022; 11:jcm11071763. [PMID: 35407371 PMCID: PMC8999342 DOI: 10.3390/jcm11071763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Micro-ribonucleic acids (microRNAs) are small molecules that take part in the regulation of gene expression. Their function has been extensively investigated in cardiovascular diseases (CVD). Most recently, miRNA expression levels have been suggested as potential biomarkers of platelet reactivity or response to antiplatelet therapy and tools for risk stratification for recurrence of ischemic evens. Among these, miR-126 and miR-223 have been found to be of particular interest. Despite numerous studies aimed at understanding the prognostic value of miRNA levels, no final conclusions have been drawn thus far regarding their utility in clinical practice. The aim of this review is to critically appraise the evidence on the association between miRNA expression, cardiovascular risk and on-treatment platelet reactivity as well as provide insights on future developments in the field.
Collapse
|
7
|
Factors Associated with Platelet Activation-Recent Pharmaceutical Approaches. Int J Mol Sci 2022; 23:ijms23063301. [PMID: 35328719 PMCID: PMC8955963 DOI: 10.3390/ijms23063301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Platelets are at the forefront of human health and disease following the advances in their research presented in past decades. Platelet activation, their most crucial function, although beneficial in the case of vascular injury, may represent the initial step for thrombotic complications characterizing various pathologic states, primarily atherosclerotic cardiovascular diseases. In this review, we initially summarize the structural and functional characteristics of platelets. Next, we focus on the process of platelet activation and its associated factors, indicating the potential molecular mechanisms involving inflammation, endothelial dysfunction, and miRs. Finally, an overview of the available antiplatelet agents is being portrayed, together with agents possessing off-set platelet-inhibitory actions, while an extensive presentation of drugs under investigation is being given.
Collapse
|
8
|
Wicik Z, Czajka P, Eyileten C, Fitas A, Wolska M, Jakubik D, von Lewinski D, Sourij H, Siller-Matula JM, Postula M. The role of miRNAs in regulation of platelet activity and related diseases - a bioinformatic analysis. Platelets 2022; 33:1052-1064. [DOI: 10.1080/09537104.2022.2042233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Marta Wolska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Doctoral School of Medical University of Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Jolanta M. Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| |
Collapse
|
9
|
Abstract
Platelets are essential mediators of physiological hemostasis and pathological thrombosis. Currently available tests and markers of platelet activation did not prove successful in guiding treatment decisions for patients with cardiovascular disease, justifying further research into novel markers of platelet reactivity. Platelets contain a variety of microRNAs (miRNAs) and are a major contributor to the extracellular circulating miRNA pool. Levels of platelet-derived miRNAs in the circulation have been associated with different measures of platelet activation as well as antiplatelet therapy and have therefore been implied as potential new markers of platelet reactivity. In contrast to the ex vivo assessment of platelet reactivity by current platelet function tests, miRNA measurements may enable assessment of platelet reactivity in vivo. It remains to be seen however, whether miRNAs may aid clinical diagnostics. Major limitations in the platelet miRNA research field remain the susceptibility to preanalytical variation, non-standardized sample preparation and data normalization that hampers inter-study comparisons. In this review, we provide an overview of the literature on circulating miRNAs as biomarkers of platelet activation, highlighting the underlying biology, the application in patients with cardiovascular disease and antiplatelet therapy and elaborating on technical limitations regarding their quantification in the circulation.
Collapse
Affiliation(s)
- Clemens Gutmann
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| |
Collapse
|
10
|
Pedersen OB, Hvas AM, Grove EL, Larsen SB, Pasalic L, Kristensen SD, Nissen PH. Association of whole blood microRNA expression with platelet function and turnover in patients with coronary artery disease. Thromb Res 2022; 211:98-105. [DOI: 10.1016/j.thromres.2022.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
|
11
|
Qi X, Lin H, Hou Y, Su X, Gao Y. Comprehensive Analysis of Potential miRNA-Target mRNA-Immunocyte Subtype Network in Cerebral Infarction. Eur Neurol 2021; 85:148-161. [PMID: 34544080 DOI: 10.1159/000518893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Cerebral infarction (CI) is one of the leading causes of serious long-term disability and mortality. OBJECTIVE We aimed to identify potential miRNAs and target mRNAs and assess the involvement of immunocyte infiltration in the process of CI. METHODS First, miRNA and mRNA data were downloaded from the Gene Expression Omnibus database, followed by differential expression analysis. Second, correlation analysis between differentially expressed mRNAs and differential immunocyte subtypes was performed through the CIBERSORT algorithm. Third, the regulatory network between miRNAs and immunocyte subtype-related mRNAs was constructed followed by the functional analysis of these target mRNAs. Fourth, correlation validation between differentially expressed mRNAs and differential immunocyte subtypes was performed in the GSE37587 dataset. Finally, the diagnostic ability of immunocyte subtype-related mRNAs was tested. RESULTS Up to 17 differentially expressed miRNAs and 3,267 differentially expressed mRNAs were identified, among which 310 differentially expressed mRNAs were significantly associated with immunocyte subtypes. Several miRNA-target mRNA-immunocyte subtype networks including hsa-miR-671-3p-ZC3HC1-neutrophils, hsa-miR-625-CD5-monocytes, hsa-miR-122-ACOX1/DUSP1/NEDD9-neutrophils, hsa-miR-455-5p-SLC24A4-monocytes, and hsa-miR-455-5p-SORL1-neutrophils were identified. LAT, ACOX1, DUSP1, NEDD9, ZC3HC1, BIN1, AKT1, DNMT1, SLC24A4, and SORL1 had a potential diagnostic value for CI. CONCLUSIONS The network including miRNA, target mRNA, and immunocyte subtype may be novel regulators and diagnostic and therapeutic targets in CI.
Collapse
Affiliation(s)
- Xiuyan Qi
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Huiqian Lin
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yongge Hou
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xiaohui Su
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yanfang Gao
- Clinical Laboratory, Hebei Red Cross Boai Hospital, Shijiazhuang, China
| |
Collapse
|
12
|
Zhang Q, Zhu F, Luo Y, Liao J, Cao J, Xue T. Platelet miR-107 Participates in Clopidogrel Resistance after PCI Treatment by Regulating P2Y12. Acta Haematol 2021; 145:46-53. [PMID: 34474410 DOI: 10.1159/000517811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/11/2021] [Indexed: 01/20/2023]
Abstract
INTRODUCTION High platelet reactivity (HPR) caused by clopidogrel tolerance is an adverse reaction of acute coronary syndrome (ACS) patients who receive clopidogrel antiplatelet therapy after percutaneous coronary intervention (PCI) surgery. Platelet microRNA (miRNA) is related to platelet reactivity. This study explored the mechanism of platelet miRNA in regulating platelet reactivity. METHODS We recruited 50 ACS/PCI patients and divided them into the HPR group (P2Y12 reaction units [PRU] ≥300) and the LPR group (PRU < 170) according to the PRU through the VerifyNow P2Y12 assay. P2Y12-related miRNAs were screened by TargetScan, miRWalk, and Gene Expression Omnibus. The expressions of P2Y12 and miRNAs in the HPR group and the LPR group were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Pearson correlation analysis was used to determine the correlation between P2Y12 and miRNAs. The interactions between P2Y12 and miR-107 were predicted by TargetScan and verified by dual-luciferase reporter assay. The regulation of miR-107 mimic or inhibitor on P2Y12 expression was detected by qRT-PCR and Western blot. RESULTS There were 22 patients in the LPR group and 28 patients in the HPR group. PY212 was highly expressed in the HPR group compared with the LPR group. We screened the P2Y12-related miRNAs (miR-145-5p, miR-4701-3p, miR-107, and miR-15b-5p), but only miR-107 and miR-15b-5p expressions were downregulated in the HPR group and were negatively correlated with PY212 expression. P2Y12 was the target gene of miR-107. PY212 expression was inhibited by miR-107 overexpression but suppressed by miR-107 silencing. CONCLUSION Platelet miR-107 participated in clopidogrel resistance in ACS/PCI patients by regulating P2Y12 expression.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Fan Zhu
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Yuyin Luo
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Jun Liao
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Jiancheng Cao
- Department of Cardiology, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| | - Tao Xue
- Department of Medical Therapeutics, First People's Hospital Affiliated to Huzhou University, Huzhou, China
| |
Collapse
|
13
|
Garcia A, Dunoyer-Geindre S, Fontana P. Do miRNAs Have a Role in Platelet Function Regulation? Hamostaseologie 2021; 41:217-224. [PMID: 34192780 DOI: 10.1055/a-1478-2105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs known to repress mRNA translation and subsequent protein production. miRNAs are predicted to modulate many targets and are involved in regulating various cellular processes. Identifying their role in cell function regulation may allow circulating miRNAs to be used as diagnostic or prognostic markers of various diseases. Increasing numbers of clinical studies have shown associations between circulating miRNA levels and platelet reactivity or the recurrence of cardiovascular events. However, these studies differed regarding population selection, sample types used, miRNA quantification procedures, and platelet function assays. Furthermore, they often lacked functional validation of the miRNA identified in such studies. The latter step is essential to identifying causal relationships and understanding if and how miRNAs regulate platelet function. This review describes recent advances in translational research dedicated to identifying miRNAs' roles in platelet function regulation.
Collapse
Affiliation(s)
- A Garcia
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - P Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
14
|
Pedersen OB, Grove EL, Kristensen SD, Nissen PH, Hvas AM. MicroRNA as Biomarkers for Platelet Function and Maturity in Patients with Cardiovascular Disease. Thromb Haemost 2021; 122:181-195. [PMID: 34091883 DOI: 10.1055/s-0041-1730375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with cardiovascular disease (CVD) are at increased risk of suffering myocardial infarction. Platelets are key players in thrombus formation and, therefore, antiplatelet therapy is crucial in the treatment and prevention of CVD. MicroRNAs (miRs) may hold the potential as biomarkers for platelet function and maturity. This systematic review was conducted using the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). To identify studies investigating the association between miRs and platelet function and maturity in patients with CVD, PubMed and Embase were searched on October 13 and December 13, 2020 without time boundaries. Risk of bias was evaluated using a standardized quality assessment tool. Of the 16 included studies, 6 studies were rated "good" and 10 studies were rated "fair." In total, 45 miRs correlated significantly with platelet function or maturity (rho ranging from -0.68 to 0.38, all p < 0.05) or differed significantly between patients with high platelet reactivity and patients with low platelet reactivity (p-values ranging from 0.0001 to 0.05). Only four miRs were investigated in more than two studies, namely miR-223, miR-126, miR-21 and miR-150. Only one study reported on the association between miRs and platelet maturity. In conclusion, a total of 45 miRs were associated with platelet function or maturity in patients with CVD, with miR-223 and miR-126 being the most frequently investigated. However, the majority of the miRs were only investigated in one study. More data are needed on the potential use of miRs as biomarkers for platelet function and maturity in CVD patients.
Collapse
Affiliation(s)
- Oliver Buchhave Pedersen
- Department of Clinical Biochemistry, Thrombosis and Haemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Erik Lerkevang Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Steen Dalby Kristensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter H Nissen
- Department of Clinical Biochemistry, Thrombosis and Haemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Thrombosis and Haemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Czajka P, Fitas A, Jakubik D, Eyileten C, Gasecka A, Wicik Z, Siller-Matula JM, Filipiak KJ, Postula M. MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front Physiol 2021; 12:652579. [PMID: 33935804 PMCID: PMC8081881 DOI: 10.3389/fphys.2021.652579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs, able to regulate cellular functions by specific gene modifications. Platelets are the major source for circulating miRNAs, with significant regulatory potential on cardiovascular pathophysiology. MiRNAs have been shown to modify the expression of platelet proteins influencing platelet reactivity. Circulating miRNAs can be determined from plasma, serum, or whole blood, and they can be used as diagnostic and prognostic biomarkers of platelet reactivity during antiplatelet therapy as well as novel therapeutic targets in cardiovascular diseases (CVDs). Herein, we review diagnostic and prognostic value of miRNAs levels related to platelet reactivity based on human studies, presenting its interindividual variability as well as the substantial role of genetics. Furthermore, we discuss antiplatelet treatment in the context of miRNAs alterations related to pathways associated with drug response.
Collapse
Affiliation(s)
- Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Aleksandra Gasecka
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Krzysztof J Filipiak
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| |
Collapse
|