1
|
Pongpom M, Khamto N, Sukantamala P, Kalawil T, Wangsanut T. Identification of Homeobox Transcription Factors in a Dimorphic Fungus Talaromyces marneffei and Protein-Protein Interaction Prediction of RfeB. J Fungi (Basel) 2024; 10:687. [PMID: 39452639 PMCID: PMC11508405 DOI: 10.3390/jof10100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Talaromyces marneffei is a thermally dimorphic fungus that can cause life-threatening systemic mycoses, particularly in immunocompromised individuals. Fungal homeobox transcription factors control various developmental processes, including the regulation of sexual reproduction, morphology, metabolism, and virulence. However, the function of homeobox proteins in T. marneffei has not been fully explored. Here, we searched the T. marneffei genome for the total homeobox transcription factors and predicted their biological relevance by performing gene expression analysis in different cell types, including conidia, mycelia, yeasts, and during phase transition. RfeB is selected for further computational analysis since (i) its transcripts were differentially expressed in different phases of T. marneffei, and (ii) this protein contains the highly conserved protein-protein interaction region (IR), which could be important for pathobiology and have therapeutic application. To assess the structure-function of the IR region, in silico alanine substitutions were performed at three-conserved IR residues (Asp276, Glu279, and Gln282) of RfeB, generating a triple RfeB mutated protein. Using 3D modeling and molecular dynamics simulations, we compared the protein complex formation of wild-type and mutated RfeB proteins with the putative partner candidate TmSwi5. Our results demonstrated that the mutated RfeB protein exhibited increased free binding energy, elevated protein compactness, and a reduced number of atomic contacts, suggesting disrupted protein stability and interaction. Notably, our model revealed that the IR residues primarily stabilized the RfeB binding sites located in the central region (CR). This computational approach for protein mutagenesis could provide a foundation for future experimental studies on the functional characterization of RfeB and other homeodomain-containing proteins in T. marneffei.
Collapse
Affiliation(s)
- Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Thitisuda Kalawil
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| | - Tanaporn Wangsanut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| |
Collapse
|
2
|
Buradam P, Thananusak R, Koffas M, Chumnanpuen P, Vongsangnak W. Expanded Gene Regulatory Network Reveals Potential Light-Responsive Transcription Factors and Target Genes in Cordyceps militaris. Int J Mol Sci 2024; 25:10516. [PMID: 39408845 PMCID: PMC11476991 DOI: 10.3390/ijms251910516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris, a fungus widely used in traditional Chinese medicine and pharmacology, is recognized for its abundant bioactive compounds, including cordycepin and carotenoids. The growth, development, and metabolite production in various fungi are influenced by the complex interactions between regulatory cascades and light-signaling pathways. However, the mechanisms of gene regulation in response to light exposure in C. militaris remain largely unexplored. This study aimed to identify light-responsive genes and potential transcription factors (TFs) in C. militaris through an integrative transcriptome analysis. To achieve this, we reconstructed an expanded gene regulatory network (eGRN) comprising 507 TFs and 8662 regulated genes using both interolog-based and homolog-based methods to build the protein-protein interaction network. Aspergillus nidulans and Neurospora crassa were chosen as templates due to their relevance as fungal models and the extensive study of their light-responsive mechanisms. By utilizing the eGRN as a framework for comparing transcriptomic responses between light-exposure and dark conditions, we identified five key TFs-homeobox TF (CCM_07504), FlbC (CCM_04849), FlbB (CCM_01128), C6 zinc finger TF (CCM_05172), and mcrA (CCM_06477)-along with ten regulated genes within the light-responsive subnetwork. These TFs and regulated genes are likely crucial for the growth, development, and secondary metabolite production in C. militaris. Moreover, molecular docking analysis revealed that two novel TFs, CCM_05727 and CCM_06992, exhibit strong binding affinities and favorable docking scores with the primary light-responsive protein CmWC-1, suggesting their potential roles in light signaling pathways. This information provides an important functional interactive network for future studies on global transcriptional regulation in C. militaris and related fungi.
Collapse
Affiliation(s)
- Paradee Buradam
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
| | - Roypim Thananusak
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| | - Mattheos Koffas
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| |
Collapse
|
3
|
Bao Y, Deng J, Akbar S, Duan Z, Zhang C, Lin W, Wu S, Yue Y, Yao W, Xu J, Zhang M. Genome-Wide Identification and Characterization of Homeobox Transcription Factors in Phoma sorghina var. saccharum Causing Sugarcane Twisted Leaf Disease. Int J Mol Sci 2024; 25:5346. [PMID: 38791383 PMCID: PMC11121360 DOI: 10.3390/ijms25105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
A homeobox transcription factor is a conserved transcription factor, ubiquitous in eukaryotes, that regulates the tissue formation of structure, cell differentiation, proliferation, and cancer. This study identified the homeobox transcription factor family and its distribution in Phoma sorghina var. saccharum at the whole genome level. It elucidated the gene structures and evolutionary characteristics of this family. Additionally, knockout experiments were carried out and the preliminary function of these transcription factors was studied. Through bioinformatics approaches, nine homeobox transcription factors (PsHOX1-PsHOX9) were identified in P. sorghina var. saccharum, and these contained HOX-conserved domains and helix-turn-helix secondary structures. Nine homeobox gene deletion mutants were obtained using the homologous recombinant gene knockout technique. Protoplast transformation was mediated by polyethylene glycol (PEG) and the transformants were identified using PCR. The knockouts of PsHOX1, PsHOX2, PsHOX3, PsHOX4, PsHOX6, PsHOX8, and PsHOX9 genes resulted in a smaller growth diameter in P. sorghina var. saccharum. In contrast, the knockouts of the PsHOX3, PsHOX6, and PsHOX9 genes inhibited the formation of conidia and led to a significant decrease in the pathogenicity. This study's results will provide insights for understanding the growth and development of P. sorghina var. saccharum. The pathogenic mechanism of the affected sugarcane will provide an essential theoretical basis for preventing and controlling sugarcane twisted leaf disease.
Collapse
Affiliation(s)
- Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530004, China; (Y.B.)
| | - Jinlan Deng
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530004, China; (Y.B.)
| | - Sehrish Akbar
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530004, China; (Y.B.)
| | - Zhenzhen Duan
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530004, China; (Y.B.)
| | - Chi Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530004, China; (Y.B.)
| | - Wenfeng Lin
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530004, China; (Y.B.)
| | - Suyan Wu
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530004, China; (Y.B.)
| | - Yabing Yue
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530004, China; (Y.B.)
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530004, China; (Y.B.)
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530004, China; (Y.B.)
| |
Collapse
|
4
|
Chen X, Che Z, Wu J, Zeng C, Yang XL, Zhang L, Lin Z. Sterigmatocystin induces autophagic and apoptotic cell death of liver cancer cells via downregulation of XIAP. Heliyon 2024; 10:e29567. [PMID: 38681656 PMCID: PMC11046247 DOI: 10.1016/j.heliyon.2024.e29567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
XIAP, or the X-linked Inhibitor of Apoptosis Protein, is the most extensively studied member within the IAP gene family. It possesses the capability to impede apoptosis through direct inhibition of caspase activity. Various kinds of cancers overexpress XIAP to enable cancer cells to avoid apoptosis. Consequently, the inhibition of XIAP holds significant clinical implications for the development of anti-tumor medications and the treatment of cancer. In this study, sterigmatocystin, a natural compound obtained from the genus asperigillus, was demonstrated to be able to induce apoptotic and autophagic cell death in liver cancer cells. Mechanistically, sterigmatocystin induces apoptosis by downregulation of XIAP expression. Additionally, sterigmatocystin treatment induces cell cycle arrest, blocks cell proliferation, and slows down colony formation in liver cancer cells. Importantly, sterigmatocystin exhibits a remarkable therapeutic effect in a nude mice model. Our findings revealed a novel mechanism through which sterigmatocystin induces apoptotic and autophagic cell death of liver cancer cells by suppressing XIAP expression, this offers a promising therapeutic approach for treating liver cancer patients.
Collapse
Affiliation(s)
- Xu Chen
- Chongqing University Jiangjin Hospital, Chongqing, 402260, PR China
- School of Life Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Zhengping Che
- School of Life Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Jiajia Wu
- School of Life Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Cheng Zeng
- School of Life Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Xiao-long Yang
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Lin Zhang
- Chongqing University Jiangjin Hospital, Chongqing, 402260, PR China
| | - Zhenghong Lin
- Chongqing University Jiangjin Hospital, Chongqing, 402260, PR China
- School of Life Sciences, Chongqing University, Chongqing, 401331, PR China
| |
Collapse
|
5
|
Calvo AM, Dabholkar A, Wyman EM, Lohmar JM, Cary JW. Regulatory functions of homeobox domain transcription factors in fungi. Appl Environ Microbiol 2024; 90:e0220823. [PMID: 38421174 PMCID: PMC10952592 DOI: 10.1128/aem.02208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Homeobox domain (HD) proteins present a crucial involvement in morphological differentiation and other functions in eukaryotes. Most HD genes encode transcription factors (TFs) that orchestrate a regulatory role in cellular and developmental decisions. In fungi, multiple studies have increased our understanding of these important HD regulators in recent years. These reports have revealed their role in fungal development, both sexual and asexual, as well as their importance in governing other biological processes in these organisms, including secondary metabolism, pathogenicity, and sensitivity to environmental stresses. Here, we provide a comprehensive review of the current knowledge on the regulatory roles of HD-TFs in fungi, with a special focus on Aspergillus species.
Collapse
Affiliation(s)
- A. M. Calvo
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, USA
| | - A. Dabholkar
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, USA
| | - E. M. Wyman
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, USA
| | - J. M. Lohmar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - J. W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| |
Collapse
|
6
|
Jang SY, Son YE, Oh DS, Han KH, Yu JH, Park HS. The Forkhead Gene fkhB is Necessary for Proper Development in Aspergillus nidulans. J Microbiol Biotechnol 2023; 33:1420-1427. [PMID: 37528554 DOI: 10.4014/jmb.2307.07009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
The forkhead domain genes are important for development and morphogenesis in fungi. Six forkhead genes fkhA-fkhF have been found in the genome of the model filamentous Ascomycete Aspergillus nidulans. To identify the fkh gene(s) associated with fungal development, we examined mRNA levels of these six genes and found that the level of fkhB and fkhD mRNA was significantly elevated during asexual development and in conidia. To investigate the roles of FkhB and FkhD, we generated fkhB and fkhD deletion mutants and complemented strains and investigated their phenotypes. The deletion of fkhB, but not fkhD, affected fungal growth and both sexual and asexual development. The fkhB deletion mutant exhibited decreased colony size with distinctly pigmented (reddish) asexual spores and a significantly lower number of conidia compared with these features in the wild type (WT), although the level of sterigmatocystin was unaffected by the absence of fkhB. Furthermore, the fkhB deletion mutant produced sexual fruiting bodies (cleistothecia) smaller than those of WT, implying that the fkhB gene is involved in both asexual and sexual development. In addition, fkhB deletion reduced fungal tolerance to heat stress and decreased trehalose accumulation in conidia. Overall, these results suggest that fkhB plays a key role in proper fungal growth, development, and conidial stress tolerance in A. nidulans.
Collapse
Affiliation(s)
- Seo-Yeong Jang
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Soon Oh
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hee-Soo Park
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Son YE, Yu JH, Park HS. The novel spore-specific regulator SscA controls Aspergillus conidiogenesis. mBio 2023; 14:e0184023. [PMID: 37707170 PMCID: PMC10653911 DOI: 10.1128/mbio.01840-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE Filamentous fungi produce myriads of asexual spores, which are the main reproductive particles that act as infectious or allergenic agents. Although the serial of asexual sporogenesis is coordinated by various genetic regulators, there remain uncharacterized transcription factors in Aspergillus. To understand the underlying mechanism of spore formation, integrity, and viability, we have performed comparative transcriptomic analyses on three Aspergillus species and found a spore-specific transcription factor, SscA. SscA has a major role in conidial formation, maturation and dormancy, and germination in Aspergillus nidulans. Functional studies indicate that SscA coordinates conidial wall integrity, amino acid production, and secondary metabolism in A. nidulans conidia. Furthermore, the roles of SscA are conserved in other Aspergillus species. Our findings that the SscA has broad functions in Aspergillus conidia will help to understand the conidiogenesis of Aspergillus species.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
8
|
Pandit SS, Zheng J, Yin Y, Lorber S, Puel O, Dhingra S, Espeso EA, Calvo AM. Homeobox transcription factor HbxA influences expression of over one thousand genes in the model fungus Aspergillus nidulans. PLoS One 2023; 18:e0286271. [PMID: 37478074 PMCID: PMC10361519 DOI: 10.1371/journal.pone.0286271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/11/2023] [Indexed: 07/23/2023] Open
Abstract
In fungi, conserved homeobox-domain proteins are transcriptional regulators governing development. In Aspergillus species, several homeobox-domain transcription factor genes have been identified, among them, hbxA/hbx1. For instance, in the opportunistic human pathogen Aspergillus fumigatus, hbxA is involved in conidial production and germination, as well as virulence and secondary metabolism, including production of fumigaclavines, fumiquinazolines, and chaetominine. In the agriculturally important fungus Aspergillus flavus, disruption of hbx1 results in fluffy aconidial colonies unable to produce sclerotia. hbx1 also regulates production of aflatoxins, cyclopiazonic acid and aflatrem. Furthermore, transcriptome studies revealed that hbx1 has a broad effect on the A. flavus genome, including numerous genes involved in secondary metabolism. These studies underline the importance of the HbxA/Hbx1 regulator, not only in developmental processes but also in the biosynthesis of a broad number of fungal natural products, including potential medical drugs and mycotoxins. To gain further insight into the regulatory scope of HbxA in Aspergilli, we studied its role in the model fungus Aspergillus nidulans. Our present study of the A. nidulans hbxA-dependent transcriptome revealed that more than one thousand genes are differentially expressed when this regulator was not transcribed at wild-type levels, among them numerous transcription factors, including those involved in development as well as in secondary metabolism regulation. Furthermore, our metabolomics analyses revealed that production of several secondary metabolites, some of them associated with A. nidulans hbxA-dependent gene clusters, was also altered in deletion and overexpression hbxA strains compared to the wild type, including synthesis of nidulanins A, B and D, versicolorin A, sterigmatocystin, austinol, dehydroaustinol, and three unknown novel compounds.
Collapse
Affiliation(s)
- Sandesh S. Pandit
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Jinfang Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sourabh Dhingra
- Department of Biological Sciences and Eukaryotic Pathogen Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Eduardo A. Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| |
Collapse
|
9
|
Son YE, Yu JH, Park HS. Regulators of the Asexual Life Cycle of Aspergillus nidulans. Cells 2023; 12:1544. [PMID: 37296664 PMCID: PMC10253035 DOI: 10.3390/cells12111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The genus Aspergillus, one of the most abundant airborne fungi, is classified into hundreds of species that affect humans, animals, and plants. Among these, Aspergillus nidulans, as a key model organism, has been extensively studied to understand the mechanisms governing growth and development, physiology, and gene regulation in fungi. A. nidulans primarily reproduces by forming millions of asexual spores known as conidia. The asexual life cycle of A. nidulans can be simply divided into growth and asexual development (conidiation). After a certain period of vegetative growth, some vegetative cells (hyphae) develop into specialized asexual structures called conidiophores. Each A. nidulans conidiophore is composed of a foot cell, stalk, vesicle, metulae, phialides, and 12,000 conidia. This vegetative-to-developmental transition requires the activity of various regulators including FLB proteins, BrlA, and AbaA. Asymmetric repetitive mitotic cell division of phialides results in the formation of immature conidia. Subsequent conidial maturation requires multiple regulators such as WetA, VosA, and VelB. Matured conidia maintain cellular integrity and long-term viability against various stresses and desiccation. Under appropriate conditions, the resting conidia germinate and form new colonies, and this process is governed by a myriad of regulators, such as CreA and SocA. To date, a plethora of regulators for each asexual developmental stage have been identified and investigated. This review summarizes our current understanding of the regulators of conidial formation, maturation, dormancy, and germination in A. nidulans.
Collapse
Affiliation(s)
- Ye-Eun Son
- Major in Food Biomaterials, School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Hee-Soo Park
- Major in Food Biomaterials, School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Yu W, Pei R, Zhou J, Zeng B, Tu Y, He B. Molecular regulation of fungal secondary metabolism. World J Microbiol Biotechnol 2023; 39:204. [PMID: 37209190 DOI: 10.1007/s11274-023-03649-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Many bioactive secondary metabolites synthesized by fungi have important applications in many fields, such as agriculture, food, medical and others. The biosynthesis of secondary metabolites is a complex process involving a variety of enzymes and transcription factors, which are regulated at different levels. In this review, we describe our current understanding on molecular regulation of fungal secondary metabolite biosynthesis, such as environmental signal regulation, transcriptional regulation and epigenetic regulation. The effects of transcription factors on the secondary metabolites produced by fungi were mainly introduced. It was also discussed that new secondary metabolites could be found in fungi and the production of secondary metabolites could be improved. We also highlight the importance of understanding the molecular regulation mechanisms to activate silent secondary metabolites and uncover their physiological and ecological functions. By comprehensively understanding the regulatory mechanisms involved in secondary metabolite biosynthesis, we can develop strategies to improve the production of these compounds and maximize their potential benefits.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Jingyi Zhou
- Zhanjiang Preschool Education College, Zhanjiang, 524084, Guangdong, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518000, Guangdong, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
11
|
Duan C, Tian FH, Yao L, Lv JH, Jia CW, Li CT. Comparative transcriptome and WGCNA reveal key genes involved in lignocellulose degradation in Sarcomyxa edulis. Sci Rep 2022; 12:18379. [PMID: 36319671 PMCID: PMC9626453 DOI: 10.1038/s41598-022-23172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
The developmental transcriptomes of Sarcomyxa edulis were assessed to explore the molecular mechanisms underlying lignocellulose degradation. Six stages were analyzed, spanning the entire developmental process: growth of mycelium until occupying half the bag (B1), mycelium under low-temperature stimulation after occupying the entire bag (B2), appearance of mycelium in primordia (B3), primordia (B4), mycelium at the harvest stage (B5), and mature fruiting body (B6). Samples from all six developmental stages were used for transcriptome sequencing, with three biological replicates for all experiments. A co-expression network of weighted genes associated with extracellular enzyme physiological traits was constructed using weighted gene co-expression network analysis (WGCNA). We obtained 19 gene co-expression modules significantly associated with lignocellulose degradation. In addition, 12 key genes and 8 kinds of TF families involved in lignocellulose degradation pathways were discovered from the four modules that exhibited the highest correlation with the target traits. These results provide new insights that advance our understanding of the molecular genetic mechanisms of lignocellulose degradation in S. edulis to facilitate its utilization by the edible mushroom industry.
Collapse
Affiliation(s)
- Chao Duan
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China ,grid.412545.30000 0004 1798 1300Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, 044000 Shanxi Province China
| | - Feng-hua Tian
- grid.443382.a0000 0004 1804 268XDepartment of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China ,grid.443382.a0000 0004 1804 268XInstitute of Edible Fungi, Guizhou University, Guiyang, China
| | - Lan Yao
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Jian-Hua Lv
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Chuan-Wen Jia
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Chang-Tian Li
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| |
Collapse
|
12
|
Hajirnis N, Mishra RK. Homeotic Genes: Clustering, Modularity, and Diversity. Front Cell Dev Biol 2021; 9:718308. [PMID: 34458272 PMCID: PMC8386295 DOI: 10.3389/fcell.2021.718308] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes code for transcription factors and are evolutionarily conserved. They regulate a plethora of downstream targets to define the anterior-posterior (AP) body axis of a developing bilaterian embryo. Early work suggested a possible role of clustering and ordering of Hox to regulate their expression in a spatially restricted manner along the AP axis. However, the recent availability of many genome assemblies for different organisms uncovered several examples that defy this constraint. With recent advancements in genomics, the current review discusses the arrangement of Hox in various organisms. Further, we revisit their discovery and regulation in Drosophila melanogaster. We also review their regulation in different arthropods and vertebrates, with a significant focus on Hox expression in the crustacean Parahyale hawaiensis. It is noteworthy that subtle changes in the levels of Hox gene expression can contribute to the development of novel features in an organism. We, therefore, delve into the distinct regulation of these genes during primary axis formation, segment identity, and extra-embryonic roles such as in the formation of hair follicles or misregulation leading to cancer. Toward the end of each section, we emphasize the possibilities of several experiments involving various organisms, owing to the advancements in the field of genomics and CRISPR-based genome engineering. Overall, we present a holistic view of the functioning of Hox in the animal world.
Collapse
Affiliation(s)
- Nikhil Hajirnis
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Rakesh K. Mishra
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
- AcSIR – Academy of Scientific and Innovative Research, Ghaziabad, India
- Tata Institute for Genetics and Society (TIGS), Bangalore, India
| |
Collapse
|
13
|
Transcription Factors in the Fungus Aspergillus nidulans: Markers of Genetic Innovation, Network Rewiring and Conflict between Genomics and Transcriptomics. J Fungi (Basel) 2021; 7:jof7080600. [PMID: 34436139 PMCID: PMC8396895 DOI: 10.3390/jof7080600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Gene regulatory networks (GRNs) are shaped by the democratic/hierarchical relationships among transcription factors (TFs) and associated proteins, together with the cis-regulatory sequences (CRSs) bound by these TFs at target promoters. GRNs control all cellular processes, including metabolism, stress response, growth and development. Due to the ability to modify morphogenetic and developmental patterns, there is the consensus view that the reorganization of GRNs is a driving force of species evolution and differentiation. GRNs are rewired through events including the duplication of TF-coding genes, their divergent sequence evolution and the gain/loss/modification of CRSs. Fungi (mainly Saccharomycotina) have served as a reference kingdom for the study of GRN evolution. Here, I studied the genes predicted to encode TFs in the fungus Aspergillus nidulans (Pezizomycotina). The analysis of the expansion of different families of TFs suggests that the duplication of TFs impacts the species level, and that the expansion in Zn2Cys6 TFs is mainly due to dispersed duplication events. Comparison of genomic annotation and transcriptomic data suggest that a significant percentage of genes should be re-annotated, while many others remain silent. Finally, a new regulator of growth and development is identified and characterized. Overall, this study establishes a novel theoretical framework in synthetic biology, as the overexpression of silent TF forms would provide additional tools to assess how GRNs are rewired.
Collapse
|
14
|
Son YE, Park HS. Unveiling the Functions of the VosA-VelB Target Gene vidD in Aspergillus nidulans. MYCOBIOLOGY 2021; 49:258-266. [PMID: 34290549 PMCID: PMC8259823 DOI: 10.1080/12298093.2021.1926122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The velvet regulators VosA and VelB are primarily involved in spore maturation and dormancy. Previous studies found that the VosA-VelB hetero-complex coordinates certain target genes that are related to fungal differentiation and conidial maturation in Aspergillus nidulans. Here, we characterized the VosA/VelB-inhibited developmental gene vidD in A. nidulans. Phenotypic analyses demonstrated that the vidD deleted mutant exhibited defect fungal growth, a reduced number of conidia, and delayed formation of sexual fruiting bodies. The deletion of vidD decreased the amount of conidial trehalose, increased the sensitivity against heat stress, and reduced the conidial viability. Moreover, the absence of vidD resulted in increased production of sterigmatocystin. Together, these results show that VidD is required for proper fungal growth, development, and sterigmatocystin production in A. nidulans.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
15
|
Guo H, Xu G, Wu R, Li Z, Yan M, Jia Z, Li Z, Chen M, Bao X, Qu Y. A Homeodomain-Containing Transcriptional Factor PoHtf1 Regulated the Development and Cellulase Expression in Penicillium oxalicum. Front Microbiol 2021; 12:671089. [PMID: 34177850 PMCID: PMC8222722 DOI: 10.3389/fmicb.2021.671089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Homeodomain-containing transcription factors (Htfs) play important roles in animals, fungi, and plants during some developmental processes. Here, a homeodomain-containing transcription factor PoHtf1 was functionally characterized in the cellulase-producing fungi Penicillium oxalicum 114-2. PoHtf1 was shown to participate in colony growth and conidiation through regulating the expression of its downstream transcription factor BrlA, the key regulator of conidiation in P. oxalicum 114-2. Additionally, PoHtf1 inhibited the expression of the major cellulase genes by coordinated regulation of cellulolytic regulators CreA, AmyR, ClrB, and XlnR. Furthermore, transcriptome analysis showed that PoHtf1 participated in the secondary metabolism including the pathway synthesizing conidial yellow pigment. These data show that PoHtf1 mediates the complex transcriptional-regulatory network cascade between developmental processes and cellulolytic gene expression in P. oxalicum 114-2. Our results should assist the development of strategies for the metabolic engineering of mutants for applications in the enzymatic hydrolysis for biochemical production.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Gen Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Ruimei Wu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhigang Li
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Mengdi Yan
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Zhilei Jia
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Zhonghai Li
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Mei Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Xiaoming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, School of Life Sciences, National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|
16
|
Tran TQ, Kioussi C. Pitx genes in development and disease. Cell Mol Life Sci 2021; 78:4921-4938. [PMID: 33844046 PMCID: PMC11073205 DOI: 10.1007/s00018-021-03833-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Homeobox genes encode sequence-specific transcription factors (SSTFs) that recognize specific DNA sequences and regulate organogenesis in all eukaryotes. They are essential in specifying spatial and temporal cell identity and as a result, their mutations often cause severe developmental defects. Pitx genes belong to the PRD class of the highly evolutionary conserved homeobox genes in all animals. Vertebrates possess three Pitx paralogs, Pitx1, Pitx2, and Pitx3 while non-vertebrates have only one Pitx gene. The ancient role of regulating left-right (LR) asymmetry is conserved while new functions emerge to afford more complex body plan and functionalities. In mouse, Pitx1 regulates hindlimb tissue patterning and pituitary development. Pitx2 is essential for the development of the oral cavity and abdominal wall while regulates the formation and symmetry of other organs including pituitary, heart, gut, lung among others by controlling growth control genes upon activation of the Wnt/ß-catenin signaling pathway. Pitx3 is essential for lens development and migration and survival of the dopaminergic neurons of the substantia nigra. Pitx gene mutations are linked to various congenital defects and cancers in humans. Pitx gene family has the potential to offer a new approach in regenerative medicine and aid in identifying new drug targets.
Collapse
Affiliation(s)
- Thai Q Tran
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
17
|
Son SH, Lee MK, Son YE, Park HS. HbxB Is a Key Regulator for Stress Response and β-Glucan Biogenesis in Aspergillus nidulans. Microorganisms 2021; 9:microorganisms9010144. [PMID: 33440846 PMCID: PMC7827800 DOI: 10.3390/microorganisms9010144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/16/2023] Open
Abstract
Homeobox transcription factors are conserved in eukaryotes and act as multi-functional transcription factors in filamentous fungi. Previously, it was demonstrated that HbxB governs fungal development and spore viability in Aspergillus nidulans. Here, the role of HbxB in A. nidulans was further characterized. RNA-sequencing revealed that HbxB affects the transcriptomic levels of genes associated with trehalose biosynthesis and response to thermal, oxidative, and radiation stresses in asexual spores called conidia. A phenotypic analysis found that hbxB deletion mutant conidia were more sensitive to ultraviolet stress. The loss of hbxB increased the mRNA expression of genes associated with β-glucan degradation and decreased the amount of β-glucan in conidia. In addition, hbxB deletion affected the expression of the sterigmatocystin gene cluster and the amount of sterigmatocystin. Overall, these results indicated that HbxB is a key transcription factor regulating trehalose biosynthesis, stress tolerance, β-glucan degradation, and sterigmatocystin production in A.nidulans conidia.
Collapse
Affiliation(s)
- Sung-Hun Son
- School of Food Science and Biotechnology Kyungpook National University, Daegu 41566, Korea; (S.-H.S.); (Y.-E.S.)
| | - Mi-Kyung Lee
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Korea;
| | - Ye-Eun Son
- School of Food Science and Biotechnology Kyungpook National University, Daegu 41566, Korea; (S.-H.S.); (Y.-E.S.)
| | - Hee-Soo Park
- School of Food Science and Biotechnology Kyungpook National University, Daegu 41566, Korea; (S.-H.S.); (Y.-E.S.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-5751
| |
Collapse
|
18
|
Lenz AR, Galán-Vásquez E, Balbinot E, de Abreu FP, Souza de Oliveira N, da Rosa LO, de Avila e Silva S, Camassola M, Dillon AJP, Perez-Rueda E. Gene Regulatory Networks of Penicillium echinulatum 2HH and Penicillium oxalicum 114-2 Inferred by a Computational Biology Approach. Front Microbiol 2020; 11:588263. [PMID: 33193246 PMCID: PMC7652724 DOI: 10.3389/fmicb.2020.588263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022] Open
Abstract
Penicillium echinulatum 2HH and Penicillium oxalicum 114-2 are well-known cellulase fungal producers. However, few studies addressing global mechanisms for gene regulation of these two important organisms are available so far. A recent finding that the 2HH wild-type is closely related to P. oxalicum leads to a combined study of these two species. Firstly, we provide a global gene regulatory network for P. echinulatum 2HH and P. oxalicum 114-2, based on TF-TG orthology relationships, considering three related species with well-known regulatory interactions combined with TFBSs prediction. The network was then analyzed in terms of topology, identifying TFs as hubs, and modules. Based on this approach, we explore numerous identified modules, such as the expression of cellulolytic and xylanolytic systems, where XlnR plays a key role in positive regulation of the xylanolytic system. It also regulates positively the cellulolytic system by acting indirectly through the cellodextrin induction system. This remarkable finding suggests that the XlnR-dependent cellulolytic and xylanolytic regulatory systems are probably conserved in both P. echinulatum and P. oxalicum. Finally, we explore the functional congruency on the genes clustered in terms of communities, where the genes related to cellular nitrogen, compound metabolic process and macromolecule metabolic process were the most abundant. Therefore, our approach allows us to confer a degree of accuracy regarding the existence of each inferred interaction.
Collapse
Affiliation(s)
- Alexandre Rafael Lenz
- Unidad Académica Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de Mexico, Mérida, Mexico
- Laboratório de Bioinformática e Biologia Computacional, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Brazil
- Departamento de Ciências Exatas e da Terra, Universidade do Estado da Bahia, Salvador, Brazil
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemàticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de Mexico, Ciudad Universitaria, Mexico
| | - Eduardo Balbinot
- Laboratório de Bioinformática e Biologia Computacional, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Brazil
| | - Fernanda Pessi de Abreu
- Laboratório de Bioinformática e Biologia Computacional, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Brazil
| | - Nikael Souza de Oliveira
- Laboratório de Bioinformática e Biologia Computacional, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Brazil
- Laboratório de Enzimas e Biomassas, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Brazil
| | - Letícia Osório da Rosa
- Laboratório de Enzimas e Biomassas, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Brazil
| | - Scheila de Avila e Silva
- Laboratório de Bioinformática e Biologia Computacional, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Brazil
| | - Marli Camassola
- Laboratório de Enzimas e Biomassas, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Brazil
| | - Aldo José Pinheiro Dillon
- Laboratório de Enzimas e Biomassas, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Brazil
| | - Ernesto Perez-Rueda
- Unidad Académica Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de Mexico, Mérida, Mexico
- Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| |
Collapse
|