1
|
Gebeyew K, Mi H, Liu Y, Liu Y, Wang B, Feyera T, Zhiliang T, He Z. Differential immunological responses in lamb rumen and colon to alfalfa hay and wheat straw in a concentrate-rich diet: insights into microbe-host interactions. mSystems 2024; 9:e0048324. [PMID: 39287375 PMCID: PMC11494937 DOI: 10.1128/msystems.00483-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
The impact of a concentrate-rich (CR) diet on the gut microbiome and epithelium homeostasis is well documented. However, it has not been systematically studied whether and how host-microbial interaction contributes to the immune homeostasis in the rumen and colon of lambs fed alfalfa hay and wheat straw, alone or combined, in a CR diet. In all, 63 lambs (initial body weight, 16.69 ± 1.50 kg) were randomly allotted to three dietary groups, each consisting of three pens with seven lambs per pen. Over 14 weeks, the lambs were fed diets as follows: 60% concentrate supplemented with either 40% wheat straw (WG), 20% alfalfa hay combined with 20% wheat straw (MG), or 40% alfalfa hay (AG). The present findings showed that lambs in the AG group had greater (P < 0.05) IgG and lower (P = 0.067) tumor necrosis factor-alpha concentrations relative to those in the MG and WG groups. The 16S rRNA analysis highlighted that various bacterial phyla and genera in the rumen and colon preferentially degrade fiber and starch derived from alfalfa hay and wheat straw. The weighted gene co-expression network analysis revealed that the bacterial genera from the Firmicutes are broadly associated with genes involved in various signaling pathways, underscoring the potential role of Firmicutes as key drivers of host-microbial interactions under the present feeding conditions. These findings shed light on the fact that the rumen and colon immune homeostasis is distinctively influenced by diets of alfalfa hay, wheat straw, or their combination in a CR diet. Further studies should examine the prolonged effects of replacing wheat straw with alfalfa hay in a concentrate-rich diet formulated to provide equivalent neutral detergent fiber levels. This could reveal how various forage fibers influence host-microbial interactions and gut health.IMPORTANCEIn contemporary feedlots, a growing trend is to feed animals a concentrate-rich (CR) diet that could disrupt the synchronized interplay between microbes and host metabolism, leading to altered metabolic functions. Wheat straw and alfalfa hay have different levels of protein and neutral detergent fiber, each with varying rates of digestion. It is unclear how including alfalfa hay and wheat straw, alone or combined in a CR diet, influences the host-microbial consortia and immune homeostasis. Herein, we showed that rumen and colon showed differential immune responses to the alfalfa hay, wheat straw, or both. Bacterial genera preferentially degrade fiber and starch derived from alfalfa hay, wheat straw, or both. Bacterial genera from Firmicutes phylum play a pivotal role in driving the host-microbial interactions, as indicated by their extensive association with genes across various signaling pathways.
Collapse
Affiliation(s)
- Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Mi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Liu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongbin Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Biao Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Teka Feyera
- Department of Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Tan Zhiliang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Salzano A, Fioriniello S, D'Onofrio N, Balestrieri ML, Aiese Cigliano R, Neglia G, Della Ragione F, Campanile G. Transcriptomic profiles of the ruminal wall in Italian Mediterranean dairy buffaloes fed green forage. BMC Genomics 2023; 24:133. [PMID: 36941576 PMCID: PMC10029215 DOI: 10.1186/s12864-023-09215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Green feed diet in ruminants exerts a beneficial effect on rumen metabolism and enhances the content of milk nutraceutical quality. At present, a comprehensive analysis focused on the identification of genes, and therefore, biological processes modulated by the green feed in buffalo rumen has never been reported. We performed RNA-sequencing in the rumen of buffaloes fed a total mixed ration (TMR) + the inclusion of 30% of ryegrass green feed (treated) or TMR (control), and identified differentially expressed genes (DEGs) using EdgeR and NOISeq tools. RESULTS We found 155 DEGs using EdgeR (p-values < 0.05) and 61 DEGs using NOISeq (prob ≥0.8), 30 of which are shared. The rt-qPCR validation suggested a higher reliability of EdgeR results as compared with NOISeq data, in our biological context. Gene Ontology analysis of DEGs identified using EdgeR revealed that green feed modulates biological processes relevant for the rumen physiology and, then, health and well-being of buffaloes, such as lipid metabolism, response to the oxidative stress, immune response, and muscle structure and function. Accordingly, we found: (i) up-regulation of HSD17B13, LOC102410803 (or PSAT1) and HYKK, and down-regulation of CDO1, SELENBP1 and PEMT, encoding factors involved in energy, lipid and amino acid metabolism; (ii) enhanced expression of SIM2 and TRIM14, whose products are implicated in the immune response and defense against infections, and reduced expression of LOC112585166 (or SAAL1), ROR2, SMOC2, and S100A11, encoding pro-inflammatory factors; (iii) up-regulation of NUDT18, DNAJA4 and HSF4, whose products counteract stressful conditions, and down-regulation of LOC102396388 (or UGT1A9) and LOC102413340 (or MRP4/ABCC4), encoding detoxifying factors; (iv) increased expression of KCNK10, CACNG4, and ATP2B4, encoding proteins modulating Ca2+ homeostasis, and reduced expression of the cytoskeleton-related MYH11 and DES. CONCLUSION Although statistically unpowered, this study suggests that green feed modulates the expression of genes involved in biological processes relevant for rumen functionality and physiology, and thus, for welfare and quality production in Italian Mediterranean dairy buffaloes. These findings, that need to be further confirmed through the validation of additional DEGs, allow to speculate a role of green feed in the production of nutraceutical molecules, whose levels might be enhanced also in milk.
Collapse
Affiliation(s)
- Angela Salzano
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | | | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | | | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy.
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy.
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| |
Collapse
|
3
|
Tsuchiya Y, Chiba E, Kimura A, Kawashima K, Hasunuma T, Kushibiki S, Kim YH, Sato S. Predicted functional analysis of rumen microbiota suggested the underlying mechanisms of the postpartum subacute ruminal acidosis in Holstein cows. J Vet Sci 2023; 24:e27. [PMID: 37012035 PMCID: PMC10071287 DOI: 10.4142/jvs.22246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/25/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND The relationships between the postpartum subacute ruminal acidosis (SARA) occurrence and predicted bacterial functions during the periparturient period are still not clear in Holstein cows. OBJECTIVES The present study was performed to investigate the alterations of rumen fermentation, bacterial community structure, and predicted bacterial functional pathways in Holstein cows. METHODS Holstein cows were divided into the SARA (n = 6) or non-SARA (n = 4) groups, depending on whether they developed SARA during the first 2 weeks after parturition. Reticulo-ruminal pH was measured continuously during the study period. Reticulo-ruminal fluid samples were collected 3 weeks prepartum, and 2 and 6 weeks postpartum, and blood samples were collected 3 weeks before, 0, 2, 4 and 6 weeks postpartum. RESULTS The postpartum decline in 7-day mean reticulo-ruminal pH was more severe and longer-lasting in the SARA group compared with the non-SARA group. Changes in predicted functional pathways were identified in the SARA group. A significant upregulation of pathway "PWY-6383" associated with Mycobacteriaceae species was identified at 3 weeks after parturition in the SARA group. Significantly identified pathways involved in denitrification (DENITRIFICATION-PWY and PWY-7084), detoxification of reactive oxygen and nitrogen species (PWY1G-0), and starch degradation (PWY-622) in the SARA group were downregulated. CONCLUSIONS The postpartum SARA occurrence is likely related to the predicted functions of rumen bacterial community rather than the alterations of rumen fermentation or fluid bacterial community structure. Therefore, our result suggests the underlying mechanisms, namely functional adaptation of bacterial community, causing postpartum SARA in Holstein cows during the periparturient period.
Collapse
Affiliation(s)
- Yoshiyuki Tsuchiya
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Ena Chiba
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Atsushi Kimura
- Veterinary Teaching Hospital, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Kenji Kawashima
- Chiba Prefectural Livestock Research Center, Yachimata, Chiba 289-1113, Japan
| | - Toshiya Hasunuma
- Toyama Prefectural Agricultural, Forestry and Fisheries Research Center, Toyama 939-8153, Japan
| | - Shiro Kushibiki
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
- Department of Large Animal Internal Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Shigeru Sato
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
4
|
In Vitro Fermentation Characteristics and Methane Mitigation Responded to Flavonoid Extract Levels from Alternanthera sissoo and Dietary Ratios. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two experiments were conducted under this study: Experiment 1 was to study production yield, chemical composition, and in vitro degradability of Brazilian spinach (Alternanthera sissoo; BS) leaf and leaf + leaf-stalk at various maturity ages of 15, 30, 45, and 60 days after plantation and regrowth and Experiment 2 was to evaluate the effect of flavonoid extract from BS leaf and leaf + leaf-stalk and dietary ratios on ruminal gas production, fermentation characteristics, and in vitro degradability. Experiment 1 showed that maturity ages after planting and regrowth increased, the yield significantly increased. Increasing maturity ages significantly (p < 0.05) increased neutral detergent fiber and acid detergent fiber content and decreased crude protein content, total flavonoid (TF) content, and degradability for both leaf and leaf + leaf-stalk. Maturity ages from 15 to 30 days after plantation and regrowth resulted (p < 0.05) the highest TF content and degradability for both leaf and leaf + leaf-stalk. Thus, BS leaf and leaf + leaf-stalk samples from 15 to 30 days of age were used for flavonoid extraction and used in the Experiment 2. Experiment 2 was conducted according to a 3 × 5 factorial experiment. Three roughage to concentrate (R:C) ratios at 50:50, 40:60, and 30:70 were used, and five levels of flavonoid extract (FE) at 0, 10, 20, 30, and 40 mg of substrate dry matter (DM) were supplemented. Experiment 2 showed that R:C ratio and FE had an interaction effect only on acetate to propionate ratio. Varying R:C ratios significantly increased (p < 0.05) in vitro DM degradability, total volatile fatty acids (VFA), and propionate (C3) concentration. FE supplementation linearly (p < 0.05) increased total VFA and C3 concentration and decreased methane production and protozoal population. This study could conclude that FE from BS could effectively modulate ruminal fermentation and decrease methane production. However, in vivo study needs to elucidate in order to validate the present results.
Collapse
|
5
|
Mizuguchi H, Ikeda T, Watanabe Y, Kushibiki S, Ikuta K, Kim YH, Sato S. Anti-lipopolysaccharide antibody administration mitigates ruminal lipopolysaccharide release and depression of ruminal pH during subacute ruminal acidosis challenge in Holstein bull cattle. J Vet Med Sci 2021; 83:905-910. [PMID: 33883339 PMCID: PMC8267201 DOI: 10.1292/jvms.21-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The effects of anti-lipopolysaccharide (LPS) antibody on rumen fermentation and LPS
activity were investigated during subacute ruminal acidosis (SARA) challenge. Eleven
Holstein cattle (164 ± 14 kg) were used in a 3 × 3 Latin square design. Cattle were fed a
roughage diet on days −11 to −1 (pre-challenge) and day 2 (post-challenge), and a
high-grain diet on days 0 and 1 (SARA challenge). For 14 days, 0-, 2-, or 4-g of anti-LPS
antibody was administered once daily through a rumen fistula. Ruminal pH was measured
continuously, and rumen fluid and blood samples were collected on days −1, 0, 1, and 2.
Significantly lower ruminal LPS activity on day 1 was observed in the 2- and 4-g groups
than those in the 0-g group. In addition, significantly higher 1-hr mean ruminal pH on
SARA challenge period (days 0 and 1) was identified in the 4-g group than in the 0-g
group. However, rumen fermentation measurements (total volatile fatty acid [VFA], VFA
components, NH3-N and lactic acid) and peripheral blood metabolites (glucose,
free fatty acid, beta-hydroxybutyrate, total cholesterol, blood urea nitrogen, aspartate
aminotransferase and gamma-glutamyl transferase) were not different among the groups
during the experimental periods. Therefore, anti-LPS antibody administration mitigates LPS
release and pH depression without the depression of rumen fermentation and peripheral
blood metabolites during SARA challenge in Holstein cattle.
Collapse
Affiliation(s)
| | - Tomoki Ikeda
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Yumi Watanabe
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Shiro Kushibiki
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki 305-0901, Japan
| | - Kentaro Ikuta
- Awaji Agricultural Technology Center, Minami-Awaji, Hyogo 656-0442, Japan
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan.,Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Shigeru Sato
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
6
|
Ogata T, Kim YH, Iwamoto E, Masaki T, Ikuta K, Sato S. Comparison of pH and bacterial communities in the rumen and reticulum during fattening of Japanese Black beef cattle. Anim Sci J 2021; 91:e13487. [PMID: 33368874 DOI: 10.1111/asj.13487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023]
Abstract
We used castrated and fistulated Japanese Black beef cattle (n = 9) to measure the pH and bacterial communities in the rumen liquid, rumen solid, and reticulum liquid during early, middle, and late fattening stages (10-14, 15-22, and 23-30 months of age, respectively). The pH was measured in the rumen and reticulum during the last 13 days of each fattening stage and was significantly lower in the rumen at the early and middle fattening stage and in the reticulum during the late stage. Sequencing analysis indicated similar bacterial compositions in the rumen and reticulum liquid fractions and stability of bacterial diversity in the rumen and reticulum liquid fractions and rumen solid fraction. By contrast, major operational taxonomic units (OTUs), such as Ruminococcus bromii strain ATCC 27255 (OTU1, OTU10, and OTU15), were differently correlated to the fermentation parameters among the rumen and reticulum liquid fractions. Therefore, the long-term feeding of Japanese Black beef cattle with a high-concentrate diet might reverse the trend of pH in the rumen and reticulum during the late fattening stage, and the bacterial communities adapted to changes in fermentation by preserving their diversity throughout fattening.
Collapse
Affiliation(s)
- Toru Ogata
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Iwate Prefectural Federation of Agricultural Mutual Aid Association, Morioka, Japan
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate, Japan
| | - Eiji Iwamoto
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Tatsunori Masaki
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Kentaro Ikuta
- Awaji Agricultural Technology Center, Minami-Awaji, Hyogo, Japan
| | - Shigeru Sato
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate, Japan
| |
Collapse
|