1
|
Chernysheva MG, Kasperovich AV, Skrabkova HS, Snitko AV, Arutyunyan AM, Badun GA. Lysozyme-dalargin self-organization at the aqueous-air and liquid-liquid interfaces. Colloids Surf B Biointerfaces 2021; 202:111695. [PMID: 33740631 DOI: 10.1016/j.colsurfb.2021.111695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/24/2020] [Accepted: 03/10/2021] [Indexed: 01/04/2023]
Abstract
An experimental study of protein-peptide binding was performed by means of radiochemical and spectroscopic methods. Lysozyme and dalargin were chosen due to their biological and physiological importance. By means of tensiometry and radiochemical assays, it was found that dalargin possesses rather high surface activity at the aqueous-air and aqueous-p-xylene interfaces to be substituted by protein. Dalargin forms a hydrophobic complex with lysozyme in which the secondary structure of lysozyme is preserved. When lysozyme forms a mixed adsorption layer with dalargin at the aqueous-air surface, the peptide prevents protein from concentrating in the subsurface monolayer. In the presence of p-xylene protein in the interface, reorganization occurs quickly, so there is no lag in the interfacial tension time dependence. The interfacial tension in this case is controlled by protein and/or protein-peptide complexes. An increase in the enzymatic activity of lysozyme in the presence of dalargin was confirmed by a docking model that suggests the formation of hydrogen bonds between dalargin and amino acid residues in the active site.
Collapse
Affiliation(s)
| | | | - Hanna S Skrabkova
- Dpt. Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Alexey V Snitko
- Dpt. Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Gennadii A Badun
- Dpt. Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
2
|
Saydé T, El Hamoui O, Alies B, Gaudin K, Lespes G, Battu S. Biomaterials for Three-Dimensional Cell Culture: From Applications in Oncology to Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:481. [PMID: 33668665 PMCID: PMC7917665 DOI: 10.3390/nano11020481] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Three-dimensional cell culture has revolutionized cellular biology research and opened the door to novel discoveries in terms of cellular behavior and response to microenvironment stimuli. Different types of 3D culture exist today, including hydrogel scaffold-based models, which possess a complex structure mimicking the extracellular matrix. These hydrogels can be made of polymers (natural or synthetic) or low-molecular weight gelators that, via the supramolecular assembly of molecules, allow the production of a reproducible hydrogel with tunable mechanical properties. When cancer cells are grown in this type of hydrogel, they develop into multicellular tumor spheroids (MCTS). Three-dimensional (3D) cancer culture combined with a complex microenvironment that consists of a platform to study tumor development and also to assess the toxicity of physico-chemical entities such as ions, molecules or particles. With the emergence of nanoparticles of different origins and natures, implementing a reproducible in vitro model that consists of a bio-indicator for nano-toxicity assays is inevitable. However, the maneuver process of such a bio-indicator requires the implementation of a repeatable system that undergoes an exhaustive follow-up. Hence, the biggest challenge in this matter is the reproducibility of the MCTS and the associated full-scale characterization of this system's components.
Collapse
Affiliation(s)
- Tarek Saydé
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges, France;
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Omar El Hamoui
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l’Adour (E2S/UPPA), 2 Avenue Pierre Angot, 64053 Pau, France
| | - Bruno Alies
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Karen Gaudin
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Gaëtane Lespes
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l’Adour (E2S/UPPA), 2 Avenue Pierre Angot, 64053 Pau, France
| | - Serge Battu
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges, France;
| |
Collapse
|