1
|
He D, Sun H, Zhang M, Li Y, Liu F, Zhang Y, He M, Ban B. Clinical Manifestations, Genetic Variants and Therapeutic Evaluation in Sporadic Chinese Patients with Idiopathic Hypogonadotropic Hypogonadism. Int J Gen Med 2023; 16:4429-4439. [PMID: 37799300 PMCID: PMC10547821 DOI: 10.2147/ijgm.s430904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Purpose Genetic factors account for a large proportion of idiopathic hypogonadotropic hypogonadism (IHH) etiologies, although not necessarily a complete genetic basis. This study aimed to characterize the clinical presentations, genetic variants, and therapeutic outcomes of patients with sporadic IHH, which may be helpful for genetic counseling and treatment decisions. Patients and Methods Eleven Chinese patients with IHH were retrospectively analyzed. Rare genetic variants were evaluated using whole-exome sequencing and bioinformatics analysis and were further classified according to the ACMG-AMP guidelines. The therapeutic responses of patients were further evaluated. Results Six heterozygous variants of SOX10, WDR11, PROKR2, CHD7 and FGF17 were detected in five Kallmann syndrome (KS) patients, whereas two heterozygous variants of CHD7 and PROKR2 were detected in two normosmic IHH (nIHH) patients. Among these variants, a novel likely pathogenic variant in the SOX10 (c.429-1G>C) was considered to cause the KS phenotype in patient 02, and two potential variants of uncertain significance (VUS) in CHD7 (c.3344G>A and c.7391A>G) possibly contributed to the KS phenotype in patient 05 and the nIHH phenotype in patient 07, which need to be confirmed by further evidence. Additionally, long-term testosterone or estradiol replacement treatment effectively improved the development of sexual characteristics in patients with IHH. Conclusion Next-generation sequencing is a powerful tool for identifying the molecular etiology and early diagnosis of IHH. Efficient therapeutic outcomes strongly indicate a need for timely treatment.
Collapse
Affiliation(s)
- Dongye He
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
| | - Hailing Sun
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, 272029, People’s Republic of China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, 272029, People’s Republic of China
| | - Fupeng Liu
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
| | - Yanhong Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, 272029, People’s Republic of China
| | - Mingming He
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, 272029, People’s Republic of China
| |
Collapse
|
2
|
Tanaka S, Zmora N, Levavi-Sivan B, Zohar Y. Chemogenetic Depletion of Hypophysiotropic GnRH Neurons Does Not Affect Fertility in Mature Female Zebrafish. Int J Mol Sci 2022; 23:ijms23105596. [PMID: 35628411 PMCID: PMC9143870 DOI: 10.3390/ijms23105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
The hypophysiotropic gonadotropin-releasing hormone (GnRH) and its neurons are crucial for vertebrate reproduction, primarily in regulating luteinizing hormone (LH) secretion and ovulation. However, in zebrafish, which lack GnRH1, and instead possess GnRH3 as the hypophysiotropic form, GnRH3 gene knockout did not affect reproduction. However, early-stage ablation of all GnRH3 neurons causes infertility in females, implicating GnRH3 neurons, rather than GnRH3 peptides in female reproduction. To determine the role of GnRH3 neurons in the reproduction of adult females, a Tg(gnrh3:Gal4ff; UAS:nfsb-mCherry) line was generated to facilitate a chemogenetic conditional ablation of GnRH3 neurons. Following ablation, there was a reduction of preoptic area GnRH3 neurons by an average of 85.3%, which was associated with reduced pituitary projections and gnrh3 mRNA levels. However, plasma LH levels were unaffected, and the ablated females displayed normal reproductive capacity. There was no correlation between the number of remaining GnRH3 neurons and reproductive performance. Though it is possible that the few remaining GnRH3 neurons can still induce an LH surge, our findings are consistent with the idea that GnRH and its neurons are likely dispensable for LH surge in zebrafish. Altogether, our results resurrected questions regarding the functional homology of the hypophysiotropic GnRH1 and GnRH3 in controlling ovulation.
Collapse
Affiliation(s)
- Sakura Tanaka
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
- Correspondence:
| |
Collapse
|
3
|
Fiore M, Tarani L, Radicioni A, Spaziani M, Ferraguti G, Putotto C, Gabanella F, Maftei D, Lattanzi R, Minni A, Greco A, Tarani F, Petrella C. Serum Prokineticin-2 in Prepubertal and Adult Klinefelter Individuals. Can J Physiol Pharmacol 2021; 100:151-157. [PMID: 34614364 DOI: 10.1139/cjpp-2021-0457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prokineticin-2 (PROK2) is a small peptide belonging to the prokineticin family. In humans and rodents this chemokine is primarily involved in the control of central and peripheral reproductive processes. Klinefelter's syndrome (KS) is the first cause of male genetic infertility, due to an extra X chromosome, which may occur with a classical karyotype (47, XXY) or mosaic forms (46, XY/47, XXY). In affected subjects, pubertal maturation usually begins at an adequate chronological age, but when development is almost complete, they display a primary gonadal failure, with early spermatogenesis damage, and later onset of testosterone insufficiency. Thus, the main aim of the present study was to investigate the serum levels of PROK2 in prepubertal and adult KS patients, comparing them with healthy subjects. We showed for the first time the presence of PROK2 in the children serum but with significant changes in KS individuals. Indeed, compared to healthy subjects characterized by PROK2 serum elevation during the growth, KS individuals showed constant serum levels during the sexual maturation phase (higher during the prepubertal phase but lower during the adult age). In conclusion, these data indicate that in KS individuals PROK2 may be considered a biomarker for investigating the SK infertility process.
Collapse
Affiliation(s)
- Marco Fiore
- IBCN-CNR, Institute of Cell Biology and Neurobiology, Roma, Italy;
| | - Luigi Tarani
- "Sapienza" University of Rome, Department of Pediatrics, Rome, Italy;
| | - Antonio Radicioni
- Sapienza University of Rome, Department of Experimental Medicine, Rome, Italy;
| | - Matteo Spaziani
- Sapienza University of Rome, Department of Experimental Medicine, Rome, Italy;
| | - Giampiero Ferraguti
- Sapienza University of Rome, Department of Cellular Biotechnologies and Hematology, Rome, Italy;
| | - Carolina Putotto
- "Sapienza" University of Rome, Department of Pediatrics, rome, Italy;
| | - Francesca Gabanella
- IBBC-CNR), Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM-CNR), Rome, Italy;
| | - Daniela Maftei
- Sapienza University of Rome, Department of Physiology and Pharmacology "Vittorio Erspamer", Rome, Italy;
| | - Roberta Lattanzi
- Sapienza University of Rome, Department of Physiology and Pharmacology "Vittorio Erspamer", Rome, Italy;
| | - Antonio Minni
- Sapienza University of Rome, Department of Sense Organs, Rome, Italy;
| | - Antonio Greco
- University of Rome La Sapienza, 9311, Rome, Lazio, Italy;
| | - Francesca Tarani
- "Sapienza" University of Rome, Department of Pediatrics, rome, Italy;
| | | |
Collapse
|
4
|
Désaubry L, Kanthasamy AG, Nebigil CG. Prokineticin signaling in heart-brain developmental axis: Therapeutic options for heart and brain injuries. Pharmacol Res 2020; 160:105190. [PMID: 32937177 PMCID: PMC7674124 DOI: 10.1016/j.phrs.2020.105190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
Heart and brain development occur simultaneously during the embryogenesis, and both organ development and injuries are interconnected. Early neuronal and cardiac injuries share mutual cellular events, such as angiogenesis and plasticity that could either delay disease progression or, in the long run, result in detrimental health effects. For this reason, the common mechanisms provide a new and previously undervalued window of opportunity for intervention. Because angiogenesis, cardiogenesis and neurogenesis are essential for the development and regeneration of the heart and brain, we discuss therein the role of prokineticin as an angiogenic neuropeptide in heart-brain development and injuries. We focus on the role of prokineticin signaling and the effect of drugs targeting prokineticin receptors in neuroprotection and cardioprotection, with a special emphasis on heart failure, neurodegenerativParkinson's disease and ischemic heart and brain injuries. Indeed, prokineticin triggers common pro-survival signaling pathway in heart and brain. Our review aims at stimulating researchers and clinicians in neurocardiology to focus on the role of prokineticin signaling in the reciprocal interaction between heart and brain. We hope to facilitate the discovery of new treatment strategies, acting in both heart and brain degenerative diseases.
Collapse
Affiliation(s)
- Laurent Désaubry
- Regenerative Nanomedicine, UMR 1260, INSERM, University of Strasbourg, Strasbourg, France
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Canan G Nebigil
- Regenerative Nanomedicine, UMR 1260, INSERM, University of Strasbourg, Strasbourg, France.
| |
Collapse
|