1
|
Xie J, Xie J, Xie D, Long X. Left ventricular remodeling and its correlation with serum cardiac troponin I in patients with end-stage renal disease treated. Int J Artif Organs 2024; 47:380-387. [PMID: 38904358 DOI: 10.1177/03913988241259975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
OBJECTIVE To investigate the effects of different blood purification modes on left ventricular remodeling and its relationship with serum cardiac troponin I (cTnI) in patients with end-stage renal disease (ESRD). METHOD A total of 108 patients with ESRD were selected, 55 cases were divided into hemodialysis combined with hemoperfusion (HD + HP) group, in which patients participants accepted routine hemodialysis for three times/week and hemoperfusion for three times/month; 53 cases in hemodialysis combined with hemodialysis filtration (HD + HDF) group, routine hemodialysis three times/week + hemodialysis filtration three times/month. The total duration of dialysis in the study was 1 year. Cardiac troponin I (cTnI) levels were measured before dialysis and 1 year after treatment, and related parameters were measured by echocardiography, including ventricular septal thickness (IVST), left ventricular posterior wall thickness (LVPWT), left ventricular end diastolic diameter (LVEDd), left ventricular end systolic diameter (LVEDs), and left ventricular myocardial mass index (LVMI). The paired t test was used within the group. Correlation analysis was performed using Spearman correlation analysis. RESULT After treatment, the levels of cTnI, IVST, LVPWT, LVEDd, LVEDs, and LVMI in the two groups were increased, and the results were statistically significant (all p < 0.05). In addition, cTnI of the two groups was significantly correlated with IVST, LVPWT, LVEDd, LVEDs, and LVMI (all p < 0.05). CONCLUSION Left ventricular remodeling is common in patients with ESRD, HD + Hp, and HD + HDF cannot reduce the phenomenon of left ventricular remodeling, cTnI can be used as a predictor of left ventricular hypertrophy and enlargement.
Collapse
Affiliation(s)
- JiWen Xie
- Department of Ultrasound, Lanzhou First People's Hospital, Lanzhou, Gansu Province, China
| | - Jing Xie
- Department of Ultrasound, Lanzhou First People's Hospital, Lanzhou, Gansu Province, China
| | - DingXiong Xie
- Gansu Institute of Cardiovascular Diseases, Gansu Province, China
| | - XiaoLi Long
- Department of Ultrasound, Lanzhou First People's Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
2
|
Wu Y, Mo J, Liang J, Pu X, Dong Y, Zhu X, Zhao H, Qiu H, Wu S, Lu T. Multiomic study of the protective mechanism of Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross against streptozotocin-induced diabetic nephropathy in Guizhou miniature pigs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155499. [PMID: 38492367 DOI: 10.1016/j.phymed.2024.155499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross (P. capitata, PCB), a traditional drug of the Miao people in China, is potential traditional drug used for the treatment of diabetic nephropathy (DN). PURPOSE The purpose of this study is to investigate the function of P. capitata and clarify its protective mechanism against DN. METHODS We induced DN in the Guizhou miniature pig with injections of streptozotocin, and P. capitata was added to the pigs' diet to treat DN. In week 16, all the animals were slaughtered, samples were collected, and the relative DN indices were measured. 16S rRNA sequencing, metagenomics, metabolomics, RNA sequencing, and proteomics were used to explore the protective mechanism of P. capitata against DN. RESULTS Dietary supplementation with P. capitata significantly reduced the extent of the disease, not only in term of the relative disease indices but also in hematoxylin-eosin-stained tissues. A multiomic analysis showed that two microbes (Clostridium baratii and Escherichia coli), five metabolites (oleic acid, linoleic acid, 4-phenylbutyric acid, 18-β-glycyrrhetinic acid, and ergosterol peroxide), four proteins (ENTPD5, EPHX1, ARVCF and TREH), four important mRNAs (encoding ENTPD5, EPHX1, ARVCF, and TREH), six lncRNAs (TCONS_00024194, TCONS_00085825, TCONS_00006937, TCONS_00070981, TCONS_00074099, and TCONS_00097913), and two circRNAs (novel_circ_0001514 and novel_circ_0017507) are all involved in the protective mechanism of P. capitata against DN. CONCLUSIONS Our results provide multidimensional theoretical support for the study and application of P. capitata.
Collapse
Affiliation(s)
- Yanjun Wu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Jiayuan Mo
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Jing Liang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Xiang Pu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Yuanqiu Dong
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Xiang Zhu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Hai Zhao
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Huaming Qiu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Shuguang Wu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Taofeng Lu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China.
| |
Collapse
|
3
|
Lee WC, Lin YS, Chen MJ, Ho WC, Chen HC, Chang TH, Liu PY, Chen MC. Downregulation of SIRT1 and GADD45G genes and left atrial fibrosis induced by right ventricular dependent pacing in a complete atrioventricular block pig model. BIOMOLECULES & BIOMEDICINE 2024; 24:360-373. [PMID: 37676057 PMCID: PMC10950345 DOI: 10.17305/bb.2023.9636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
The molecular and genetic mechanisms underlying left atrial (LA) enlargement and atrial fibrosis following right ventricular (RV) dependent pacing remain unclear. Our objective was to investigate genetic expressions in the LA of pigs subjected to RV pacing for atrioventricular block (AVB), as well as to identify the differential gene expressions affected by biventricular (BiV) pacing. We established an AVB pig model and divided the subjects into three groups: a sham control group, an RV pacing group, and a BiV pacing group. Differential expression genes (DEGs) analyses conducted through next-generation sequencing (NGS) and enrichment analyses were employed to identify genes with altered expression in the LA myocardium. The RV pacing group showed a significant increase in extracellular fibrosis in the LA myocardium compared to the control group. NGS analysis revealed suppressed expression of the sirtuin signaling pathway in the RV pacing group. Among the DEGs within this pathway, GADD45G was found to be downregulated in the RV pacing group and upregulated in the BiV pacing group. Remarkably, the BiV pacing group exhibited elevated levels of GADD45G protein. In our study, we observed significant downregulation of SIRT1 and GADD45G genes, which are associated with the sirtuin signaling pathway, in the LA myocardium of the RV pacing group when compared to the control group. Moreover, these genes, which were downregulated in the RV pacing group, displayed a noteworthy upregulation in the BiV pacing group when compared to the RV pacing group.
Collapse
Affiliation(s)
- Wei-Chieh Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cardiology, Chi Mei Medical Center, Tainan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Sheng Lin
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Man-Jing Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Chun Ho
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Huang-Chung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mien-Cheng Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
4
|
el Mathari S, Kluin J, Hopman LHGA, Bhagirath P, Oudeman MAP, Vonk ABA, Nederveen AJ, Eberl S, Klautz RJM, Chamuleau SAJ, van Ooij P, Götte MJW. The role and implications of left atrial fibrosis in surgical mitral valve repair as assessed by CMR: the ALIVE study design and rationale. Front Cardiovasc Med 2023; 10:1166703. [PMID: 37252116 PMCID: PMC10213679 DOI: 10.3389/fcvm.2023.1166703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023] Open
Abstract
Background Patients with mitral regurgitation (MR) commonly suffer from left atrial (LA) remodeling. LA fibrosis is considered to be a key player in the LA remodeling process, as observed in atrial fibrillation (AF) patients. Literature on the presence and extent of LA fibrosis in MR patients however, is scarce and its clinical implications remain unknown. Therefore, the ALIVE trial was designed to investigate the presence of LA remodeling including LA fibrosis in MR patients prior to and after mitral valve repair (MVR) surgery. Methods The ALIVE trial is a single center, prospective pilot study investigating LA fibrosis in patients suffering from MR in the absence of AF (identifier NCT05345730). In total, 20 participants will undergo a CMR scan including 3D late gadolinium enhancement (LGE) imaging 2 week prior to MVR surgery and at 3 months follow-up. The primary objective of the ALIVE trial is to assess the extent and geometric distribution of LA fibrosis in MR patients and to determine effects of MVR surgery on reversed atrial remodelling. Implications This study will provide novel insights into the pathophysiological mechanism of fibrotic and volumetric atrial (reversed) remodeling in MR patients undergoing MVR surgery. Our results may contribute to improved clinical decision making and patient-specific treatment strategies in patients suffering from MR.
Collapse
Affiliation(s)
- Sulayman el Mathari
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Luuk H. G. A. Hopman
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Pranav Bhagirath
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Maurice A. P. Oudeman
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Alexander B. A. Vonk
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Susanne Eberl
- Department of Anesthesiology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Robert J. M. Klautz
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Rotterdam, Netherlands
| | | | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Marco J. W. Götte
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
5
|
Papini G, Furini G, Matteucci M, Biemmi V, Casieri V, Di Lascio N, Milano G, Chincoli LR, Faita F, Barile L, Lionetti V. Cardiomyocyte-targeting exosomes from sulforaphane-treated fibroblasts affords cardioprotection in infarcted rats. J Transl Med 2023; 21:313. [PMID: 37161563 PMCID: PMC10169450 DOI: 10.1186/s12967-023-04155-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Exosomes (EXOs), tiny extracellular vesicles that facilitate cell-cell communication, are being explored as a heart failure treatment, although the features of the cell source restrict their efficacy. Fibroblasts the most prevalent non-myocyte heart cells, release poor cardioprotective EXOs. A noninvasive method for manufacturing fibroblast-derived exosomes (F-EXOs) that target cardiomyocytes and slow cardiac remodeling is expected. As a cardioprotective isothiocyanate, sulforaphane (SFN)-induced F-EXOs (SFN-F-EXOs) should recapitulate its anti-remodeling properties. METHODS Exosomes from low-dose SFN (3 μM/7 days)-treated NIH/3T3 murine cells were examined for number, size, and protein composition. Fluorescence microscopy, RT-qPCR, and western blot assessed cell size, oxidative stress, AcH4 levels, hypertrophic gene expression, and caspase-3 activation in angiotensin II (AngII)-stressed HL-1 murine cardiomyocytes 12 h-treated with various EXOs. The uptake of fluorescently-labeled EXOs was also measured in cardiomyocytes. The cardiac function of infarcted male Wistar rats intramyocardially injected with different EXOs (1·1012) was examined by echocardiography. Left ventricular infarct size, hypertrophy, and capillary density were measured. RESULTS Sustained treatment of NIH/3T3 with non-toxic SFN concentration significantly enhances the release of CD81 + EXOs rich in TSG101 (Tumor susceptibility gene 101) and Hsp70 (Heat Shock Protein 70), and containing maspin, an endogenous histone deacetylase 1 inhibitor. SFN-F-EXOs counteract angiotensin II (AngII)-induced hypertrophy and apoptosis in murine HL-1 cardiomyocytes enhancing SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a) levels more effectively than F-EXOs. In stressed cardiomyocytes, SFN-F-EXOs boost AcH4 levels by 30% (p < 0.05) and significantly reduce oxidative stress more than F-EXOs. Fluorescence microscopy showed that mouse cardiomyocytes take in SFN-F-EXOs ~ threefold more than F-EXOs. Compared to vehicle-injected infarcted hearts, SFN-F-EXOs reduce hypertrophy, scar size, and improve contractility. CONCLUSIONS Long-term low-dose SFN treatment of fibroblasts enhances the release of anti-remodeling cardiomyocyte-targeted F-EXOs, which effectively prevent the onset of HF. The proposed method opens a new avenue for large-scale production of cardioprotective exosomes for clinical application using allogeneic fibroblasts.
Collapse
Affiliation(s)
- Gaia Papini
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Giulia Furini
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Anesthesiology and Intensive Care Medicine, UOSVD, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Marco Matteucci
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Vanessa Biemmi
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900, Lugano, Switzerland
| | - Valentina Casieri
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Nicole Di Lascio
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Giuseppina Milano
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Lucia Rosa Chincoli
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Lucio Barile
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900, Lugano, Switzerland
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, The Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy.
- Anesthesiology and Intensive Care Medicine, UOSVD, Fondazione Toscana G. Monasterio, Pisa, Italy.
| |
Collapse
|
6
|
Aimo A, Spitaleri G, Nieri D, Tavanti LM, Meschi C, Panichella G, Lupón J, Pistelli F, Carrozzi L, Bayes-Genis A, Emdin M. Pirfenidone for Idiopathic Pulmonary Fibrosis and Beyond. Card Fail Rev 2022; 8:e12. [PMID: 35516794 PMCID: PMC9062707 DOI: 10.15420/cfr.2021.30] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Pirfenidone (PFD) slows the progression of idiopathic pulmonary fibrosis (IPF) by inhibiting the exaggerated fibrotic response and possibly through additional mechanisms, such as anti-inflammatory effects. PFD has also been evaluated in other fibrosing lung diseases. Myocardial fibrosis is a common feature of several heart diseases and the progressive deposition of extracellular matrix due to a persistent injury to cardiomyocytes may trigger a vicious cycle that leads to persistent structural and functional alterations of the myocardium. No primarily antifibrotic medications are used to treat patients with heart failure. There is some evidence that PFD has antifibrotic actions in various animal models of cardiac disease and a phase II trial on patients with heart failure and preserved ejection fraction has yielded positive results. This review summarises the evidence about the possible mechanisms of IPF and modulation by PFD, the main results about IPF or non-IPF interstitial pneumonias and also data about PFD as a potential protective cardiac drug.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giosafat Spitaleri
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Dari Nieri
- Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy
| | - Laura Maria Tavanti
- Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy
| | - Claudia Meschi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Josep Lupón
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesco Pistelli
- Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy
| | - Laura Carrozzi
- Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy; Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Antoni Bayes-Genis
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
7
|
Bandera F, Mollo A, Frigelli M, Guglielmi G, Ventrella N, Pastore MC, Cameli M, Guazzi M. Cardiac Imaging for the Assessment of Left Atrial Mechanics Across Heart Failure Stages. Front Cardiovasc Med 2022; 8:750139. [PMID: 35096989 PMCID: PMC8792604 DOI: 10.3389/fcvm.2021.750139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022] Open
Abstract
The left atrium (LA) is emerging as a key element in the pathophysiology of several cardiac diseases due to having an active role in contrasting heart failure (HF) progression. Its morphological and functional remodeling occurs progressively according to pressure or volume overload generated by the underlying disease, and its ability of adaptation contributes to avoid pulmonary circulation congestion and to postpone HF symptoms. Moreover, early signs of LA dysfunction can anticipate and predict the clinical course of HF diseases before the symptom onset which, particularly, also applies to patients with increased risk of HF with still normal cardiac structure (stage A HF). The study of LA mechanics (chamber morphology and function) is moving from a research interest to a clinical application thanks to a great clinical, prognostic, and pathophysiological significance. This process is promoted by the technological progress of cardiac imaging which increases the availability of easy-to-use tools for clinicians and HF specialists. Two-dimensional (2D) speckle tracking echocardiography and feature tracking cardiac magnetic resonance are becoming essential for daily practice. In this context, a deep understanding of LA mechanics, its prognostic significance, and the available approaches are essential to improve clinical practice. The present review will focus on LA mechanics, discussing atrial physiology and pathophysiology of main cardiac diseases across the HF stages with specific attention to the prognostic significance. Imaging techniques for LA mechanics assessment will be discussed with an overlook on the dynamic (under stress) evaluation of the chamber.
Collapse
Affiliation(s)
- Francesco Bandera
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
- Cardiology University Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Anita Mollo
- Cardiology University Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Matteo Frigelli
- Cardiology University Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Giulia Guglielmi
- Cardiology University Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Nicoletta Ventrella
- Cardiology University Department, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Matteo Cameli
- Department of Cardiovascular Diseases, University of Siena, Siena, Italy
| | - Marco Guazzi
- Department of Biological Sciences, University of Milano, Milan, Italy
- Cardiology Division, San Paolo Hospital, Milan, Italy
| |
Collapse
|