1
|
Arnal LH, Gonçalves N. Rough is salient: a conserved vocal niche to hijack the brain's salience system. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240020. [PMID: 40176527 PMCID: PMC11966164 DOI: 10.1098/rstb.2024.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 04/04/2025] Open
Abstract
The propensity to communicate extreme emotional states and arousal through salient, non-referential vocalizations is ubiquitous among mammals and beyond. Screams, whether intended to warn conspecifics or deter aggressors, require a rapid increase of air influx through vocal folds to induce nonlinear distortions of the signal. These distortions contain salient, temporally patterned acoustic features in a restricted range of the audible spectrum. These features may have a biological significance, triggering fast behavioural responses in the receivers. We present converging neurophysiological and behavioural evidence from humans and animals supporting that the properties emerging from nonlinear vocal phenomena are ideally adapted to induce efficient sensory, emotional and behavioural responses. We argue that these fast temporal-rough-modulations are unlikely to be an epiphenomenon of vocal production but rather the result of selective evolutionary pressure on vocal warning signals to promote efficient communication. In this view, rough features may have been selected and conserved as an acoustic trait to recruit ancestral sensory salience pathways and elicit optimal reactions in the receiver. By exploring the impact of rough vocalizations at the receiver's end, we review the perceptual, behavioural and neural factors that may have shaped these signals to evolve as powerful communication tools.This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.
Collapse
Affiliation(s)
- Luc H. Arnal
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnect, Paris75012, France
| | - Noémi Gonçalves
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnect, Paris75012, France
| |
Collapse
|
2
|
Frühholz S, Rodriguez P, Bonard M, Steiner F, Bobin M. Psychoacoustic and Archeoacoustic nature of ancient Aztec skull whistles. COMMUNICATIONS PSYCHOLOGY 2024; 2:108. [PMID: 39528620 PMCID: PMC11555264 DOI: 10.1038/s44271-024-00157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Many ancient cultures used musical tools for social and ritual procedures, with the Aztec skull whistle being a unique exemplar from postclassic Mesoamerica. Skull whistles can produce softer hiss-like but also aversive and scream-like sounds that were potentially meaningful either for sacrificial practices, mythological symbolism, or intimidating warfare of the Aztecs. However, solid psychoacoustic evidence for any theory is missing, especially how human listeners cognitively and affectively respond to skull whistle sounds. Using psychoacoustic listening and classification experiments, we show that skull whistle sounds are predominantly perceived as aversive and scary and as having a hybrid natural-artificial origin. Skull whistle sounds attract mental attention by affectively mimicking other aversive and startling sounds produced by nature and technology. They were psychoacoustically classified as a hybrid mix of being voice- and scream-like but also originating from technical mechanisms. Using human neuroimaging, we furthermore found that skull whistle sounds received a specific decoding of the affective significance in the neural auditory system of human listeners, accompanied by higher-order auditory cognition and symbolic evaluations in fronto-insular-parietal brain systems. Skull whistles thus seem unique sound tools with specific psycho-affective effects on listeners, and Aztec communities might have capitalized on the scary and scream-like nature of skull whistles.
Collapse
Affiliation(s)
- Sascha Frühholz
- Cognitive and Affective Neuroscience Unit, University of Zurich, Zurich, Switzerland.
- Department of Psychology, University of Oslo, Oslo, Norway.
| | - Pablo Rodriguez
- Cognitive and Affective Neuroscience Unit, University of Zurich, Zurich, Switzerland
| | - Mathilde Bonard
- Cognitive and Affective Neuroscience Unit, University of Zurich, Zurich, Switzerland
| | - Florence Steiner
- Cognitive and Affective Neuroscience Unit, University of Zurich, Zurich, Switzerland
| | - Marine Bobin
- Cognitive and Affective Neuroscience Unit, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Lehotzky D, Zupanc GKH. Supervised learning algorithm for analysis of communication signals in the weakly electric fish Apteronotus leptorhynchus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:443-458. [PMID: 37704754 PMCID: PMC11106210 DOI: 10.1007/s00359-023-01664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 09/15/2023]
Abstract
Signal analysis plays a preeminent role in neuroethological research. Traditionally, signal identification has been based on pre-defined signal (sub-)types, thus being subject to the investigator's bias. To address this deficiency, we have developed a supervised learning algorithm for the detection of subtypes of chirps-frequency/amplitude modulations of the electric organ discharge that are generated predominantly during electric interactions of individuals of the weakly electric fish Apteronotus leptorhynchus. This machine learning paradigm can learn, from a 'ground truth' data set, a function that assigns proper outputs (here: time instances of chirps and associated chirp types) to inputs (here: time-series frequency and amplitude data). By employing this artificial intelligence approach, we have validated previous classifications of chirps into different types and shown that further differentiation into subtypes is possible. This demonstration of its superiority compared to traditional methods might serve as proof-of-principle of the suitability of the supervised machine learning paradigm for a broad range of signals to be analyzed in neuroethology.
Collapse
Affiliation(s)
- Dávid Lehotzky
- Laboratory of Neurobiology, Department of Biology, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Wetekam J, Hechavarría J, López-Jury L, González-Palomares E, Kössl M. Deviance Detection to Natural Stimuli in Population Responses of the Brainstem of Bats. J Neurosci 2024; 44:e1588232023. [PMID: 38262723 PMCID: PMC10904087 DOI: 10.1523/jneurosci.1588-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 01/25/2024] Open
Abstract
Deviance detection describes an increase of neural response strength caused by a stimulus with a low probability of occurrence. This ubiquitous phenomenon has been reported for humans and multiple other species, from subthalamic areas to the auditory cortex. Cortical deviance detection has been well characterized by a range of studies using a variety of different stimuli, from artificial to natural, with and without a behavioral relevance. This allowed the identification of a broad variety of regularity deviations that are detected by the cortex. Moreover, subcortical deviance detection has been studied with simple stimuli that are not meaningful to the subject. Here, we aim to bridge this gap by using noninvasively recorded auditory brainstem responses (ABRs) to investigate deviance detection at population level in the lower stations of the auditory system of a highly vocal species: the bat Carollia perspicillata (of either sex). Our present approach uses behaviorally relevant vocalization stimuli that are similar to the animals' natural soundscape. We show that deviance detection in ABRs is significantly stronger for echolocation pulses than for social communication calls or artificial sounds, indicating that subthalamic deviance detection depends on the behavioral meaning of a stimulus. Additionally, complex physical sound features like frequency- and amplitude modulation affected the strength of deviance detection in the ABR. In summary, our results suggest that the brain can detect different types of deviants already in the brainstem, showing that subthalamic brain structures exhibit more advanced forms of deviance detection than previously known.
Collapse
Affiliation(s)
- Johannes Wetekam
- Department of Neurobiology and Biological Sensors, Institute of Cell Biology and Neuroscience, Goethe University, 60439 Frankfurt am Main, Germany
| | - Julio Hechavarría
- Department of Neurobiology and Biological Sensors, Institute of Cell Biology and Neuroscience, Goethe University, 60439 Frankfurt am Main, Germany
| | - Luciana López-Jury
- Department of Neurobiology and Biological Sensors, Institute of Cell Biology and Neuroscience, Goethe University, 60439 Frankfurt am Main, Germany
| | - Eugenia González-Palomares
- Department of Neurobiology and Biological Sensors, Institute of Cell Biology and Neuroscience, Goethe University, 60439 Frankfurt am Main, Germany
| | - Manfred Kössl
- Department of Neurobiology and Biological Sensors, Institute of Cell Biology and Neuroscience, Goethe University, 60439 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Yoshino-Hashizawa K, Nishiuchi Y, Hiragochi M, Kihara M, Kobayasi KI, Hiryu S. The distress context of social calls evokes a fear response in the bat Pipistrellus abramus. J Exp Biol 2023; 226:jeb246271. [PMID: 37921105 PMCID: PMC10714146 DOI: 10.1242/jeb.246271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Bats primarily use sound information, including echolocation, for social communication. Bats under stressful conditions, for example when confronted by a predator, will emit aggressive social calls. The presentation of aggressive social calls, including distress calls (DCs), is known to increase heart rate (fH), but how this change in fH is related to the bat's sound perception and how this evokes behaviors such as the fear response is unknown. Herein, we show that the perception of a distress context induces freezing behavior as a fear response in bats. We found that bats responded by freezing and displayed increased fH when they were presented with a conspecific donor bat in a distress situation evoked by gentle poking with a cotton swab. In addition, when we presented two types of auditory oddball paradigms with different probabilities of DCs and echolocation calls (ECs), the bats' fH increased when DCs were presented as deviant or control stimuli within standard ECs but did not increase when DCs were presented as standard stimuli. These results suggest that the situational context created by the frequency of sound presentation, rather than simply a single sound feature, induces fH increases and freezing as fear responses in bats.
Collapse
Affiliation(s)
- Kazuki Yoshino-Hashizawa
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Yuna Nishiuchi
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Midori Hiragochi
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Motoki Kihara
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Kohta I. Kobayasi
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Shizuko Hiryu
- Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
6
|
Gonzalez-Palomares E, Boulanger-Bertolus J, Dupin M, Mouly AM, Hechavarria JC. Amplitude modulation pattern of rat distress vocalisations during fear conditioning. Sci Rep 2023; 13:11173. [PMID: 37429931 PMCID: PMC10333300 DOI: 10.1038/s41598-023-38051-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
In humans, screams have strong amplitude modulations (AM) at 30 to 150 Hz. These AM correspond to the acoustic correlate of perceptual roughness. In bats, distress calls can carry AMs, which elicit heart rate increases in playback experiments. Whether amplitude modulation occurs in fearful vocalisations of other animal species beyond humans and bats remains unknown. Here we analysed the AM pattern of rats' 22-kHz ultrasonic vocalisations emitted in a fear conditioning task. We found that the number of vocalisations decreases during the presentation of conditioned stimuli. We also observed that AMs do occur in rat 22-kHz vocalisations. AMs are stronger during the presentation of conditioned stimuli, and during escape behaviour compared to freezing. Our results suggest that the presence of AMs in vocalisations emitted could reflect the animal's internal state of fear related to avoidance behaviour.
Collapse
Affiliation(s)
| | - Julie Boulanger-Bertolus
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Maryne Dupin
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Anne-Marie Mouly
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Université Claude Bernard Lyon 1, 69500, Bron, France.
| | - Julio C Hechavarria
- Institute for Cell Biology and Neuroscience, Goethe University, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Di Stefano N, Vuust P, Brattico E. Consonance and dissonance perception. A critical review of the historical sources, multidisciplinary findings, and main hypotheses. Phys Life Rev 2022; 43:273-304. [PMID: 36372030 DOI: 10.1016/j.plrev.2022.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Revealed more than two millennia ago by Pythagoras, consonance and dissonance (C/D) are foundational concepts in music theory, perception, and aesthetics. The search for the biological, acoustical, and cultural factors that affect C/D perception has resulted in descriptive accounts inspired by arithmetic, musicological, psychoacoustical or neurobiological frameworks without reaching a consensus. Here, we review the key historical sources and modern multidisciplinary findings on C/D and integrate them into three main hypotheses: the vocal similarity hypothesis (VSH), the psychocultural hypothesis (PH), and the sensorimotor hypothesis (SH). By illustrating the hypotheses-related findings, we highlight their major conceptual, methodological, and terminological shortcomings. Trying to provide a unitary framework for C/D understanding, we put together multidisciplinary research on human and animal vocalizations, which converges to suggest that auditory roughness is associated with distress/danger and, therefore, elicits defensive behavioral reactions and neural responses that indicate aversion. We therefore stress the primacy of vocality and roughness as key factors in the explanation of C/D phenomenon, and we explore the (neuro)biological underpinnings of the attraction-aversion mechanisms that are triggered by C/D stimuli. Based on the reviewed evidence, while the aversive nature of dissonance appears as solidly rooted in the multidisciplinary findings, the attractive nature of consonance remains a somewhat speculative claim that needs further investigation. Finally, we outline future directions for empirical research in C/D, especially regarding cross-modal and cross-cultural approaches.
Collapse
Affiliation(s)
- Nicola Di Stefano
- Institute for Cognitive Sciences and Technologies (ISTC), National Research Council of Italy (CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy.
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Royal Academy of Music Aarhus/Aalborg (RAMA), 8000 Aarhus, Denmark.
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Royal Academy of Music Aarhus/Aalborg (RAMA), 8000 Aarhus, Denmark; Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70122 Bari, Italy.
| |
Collapse
|
8
|
Bergmann A, Gloza-Rausch F, Wimmer B, Kugelschafter K, Knörnschild M. Similarities in social calls during autumn swarming may facilitate interspecific communication between Myotis bat species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.950951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bats employ a variety of social calls for communication purposes. However, for most species, social calls are far less studied than echolocation calls and their specific function often remains unclear. We investigated the function of in-flight social calls during autumn swarming in front of a large hibernaculum in Northern Germany, whose main inhabitants are two species of Myotis bats, Natterer’s bats (Myotis nattereri) and Daubenton’s bats (Myotis daubentonii). We recorded social calls in nights of high swarming activity and grouped the calls based on their spectro-temporal structure into ten types and verified our visual classification by a discriminant function analysis. Whenever possible, we subsequently assigned social calls to either M. daubentonii or M. nattereri by analyzing the echolocation calls surrounding them. As many bats echolocate at the same time during swarming, we did not analyze single echolocation calls but the “soundscape” surrounding each social call instead, encompassing not only spectral parameters but also the timbre (vocal “color”) of echolocation calls. Both species employ comparatively similar social call types in a swarming context, even though there are subtle differences in call parameters between species. To additionally gain information about the general function of social calls produced in a swarming context, we performed playback experiments with free-flying bats in the vicinity of the roost, using three different call types from both species, respectively. In three out of six treatments, bat activity (approximated as echolocation call rate) increased during and after stimulus presentation, indicating that bats inspected or approached the playback site. Using a camera trap, we were sometimes able to identify the species of approaching bats. Based on the photos taken during playbacks, we assume one call type to support interspecific communication while another call type works for intraspecific group cohesion.
Collapse
|
9
|
Kelley DB. Convergent and divergent neural circuit architectures that support acoustic communication. Front Neural Circuits 2022; 16:976789. [PMID: 36466364 PMCID: PMC9712726 DOI: 10.3389/fncir.2022.976789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Vocal communication is used across extant vertebrates, is evolutionarily ancient, and been maintained, in many lineages. Here I review the neural circuit architectures that support intraspecific acoustic signaling in representative anuran, mammalian and avian species as well as two invertebrates, fruit flies and Hawaiian crickets. I focus on hindbrain motor control motifs and their ties to respiratory circuits, expression of receptors for gonadal steroids in motor, sensory, and limbic neurons as well as divergent modalities that evoke vocal responses. Hindbrain and limbic participants in acoustic communication are highly conserved, while forebrain participants have diverged between anurans and mammals, as well as songbirds and rodents. I discuss the roles of natural and sexual selection in driving speciation, as well as exaptation of circuit elements with ancestral roles in respiration, for producing sounds and driving rhythmic vocal features. Recent technical advances in whole brain fMRI across species will enable real time imaging of acoustic signaling partners, tying auditory perception to vocal production.
Collapse
|
10
|
Di Stefano N, Spence C. Roughness perception: A multisensory/crossmodal perspective. Atten Percept Psychophys 2022; 84:2087-2114. [PMID: 36028614 PMCID: PMC9481510 DOI: 10.3758/s13414-022-02550-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/08/2022]
Abstract
Roughness is a perceptual attribute typically associated with certain stimuli that are presented in one of the spatial senses. In auditory research, the term is typically used to describe the harsh effects that are induced by particular sound qualities (i.e., dissonance) and human/animal vocalizations (e.g., screams, distress cries). In the tactile domain, roughness is a crucial factor determining the perceptual features of a surface. The same feature can also be ascertained visually, by means of the extraction of pattern features that determine the haptic quality of surfaces, such as grain size and density. By contrast, the term roughness has rarely been applied to the description of those stimuli perceived via the chemical senses. In this review, we take a critical look at the putative meaning(s) of the term roughness, when used in both unisensory and multisensory contexts, in an attempt to answer two key questions: (1) Is the use of the term 'roughness' the same in each modality when considered individually? and (2) Do crossmodal correspondences involving roughness match distinct perceptual features or (at least on certain occasions) do they merely pick-up on an amodal property? We start by examining the use of the term in the auditory domain. Next, we summarize the ways in which the term roughness has been used in the literature on tactile and visual perception, and in the domain of olfaction and gustation. Then, we move on to the crossmodal context, reviewing the literature on the perception of roughness in the audiovisual, audiotactile, and auditory-gustatory/olfactory domains. Finally, we highlight some limitations of the reviewed literature and we outline a number of key directions for future empirical research in roughness perception.
Collapse
Affiliation(s)
- Nicola Di Stefano
- National Research Council, Institute for Cognitive Sciences and Technologies, Rome, Italy.
| | | |
Collapse
|
11
|
Beetz MJ, Hechavarría JC. Neural Processing of Naturalistic Echolocation Signals in Bats. Front Neural Circuits 2022; 16:899370. [PMID: 35664459 PMCID: PMC9157489 DOI: 10.3389/fncir.2022.899370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Echolocation behavior, a navigation strategy based on acoustic signals, allows scientists to explore neural processing of behaviorally relevant stimuli. For the purpose of orientation, bats broadcast echolocation calls and extract spatial information from the echoes. Because bats control call emission and thus the availability of spatial information, the behavioral relevance of these signals is undiscussable. While most neurophysiological studies, conducted in the past, used synthesized acoustic stimuli that mimic portions of the echolocation signals, recent progress has been made to understand how naturalistic echolocation signals are encoded in the bat brain. Here, we review how does stimulus history affect neural processing, how spatial information from multiple objects and how echolocation signals embedded in a naturalistic, noisy environment are processed in the bat brain. We end our review by discussing the huge potential that state-of-the-art recording techniques provide to gain a more complete picture on the neuroethology of echolocation behavior.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Julio C. Hechavarría
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
12
|
Olfactory learning and memory in the greater short-nosed fruit bat Cynopterus sphinx: the influence of conspecifics distress calls. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:667-679. [PMID: 34426872 DOI: 10.1007/s00359-021-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 07/13/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
This study was designed to test whether Cynopterus sphinx distress calls influence olfactory learning and memory in conspecifics. Bats were exposed to distress calls/playbacks (PBs) of distress calls/modified calls and were then trained to novel odors. Bats exposed to distress calls/PBs made significantly fewer feeding attempts and bouts of PBs exposed to modified calls, which significantly induced the expression of c-Fos in the caudomedial neostriatum (NCM) and the amygdala compared to bats exposed to modified calls and trained controls. However, the expression of c-Fos in the hippocampus was not significantly different between the experimental groups. Further, protein phosphatase-1 (PP-1) expression was significantly lower, and the expression levels of E1A homologue of CREB-binding protein (CBP) (P300), brain-derived neurotrophic factor (BDNF) and its tyrosine kinase B1 (TrkB1) receptor were significantly higher in the hippocampus of control/bats exposed to modified calls compared to distress calls/PBs of distress call-exposed bats. Exposure to the call possibly alters the reciprocal interaction between the amygdala and the hippocampus, accordingly regulating the expression levels of PP1, P300 and BDNF and its receptor TrkB1 following training to the novel odor. Thus, the learning and memory consolidation processes were disrupted and showed fewer feeding attempts and bouts. This model may be helpful for understanding the contributions of stressful social communications to human disorders.
Collapse
|
13
|
Hörpel SG, Baier AL, Peremans H, Reijniers J, Wiegrebe L, Firzlaff U. Communication breakdown: Limits of spectro-temporal resolution for the perception of bat communication calls. Sci Rep 2021; 11:13708. [PMID: 34211004 PMCID: PMC8249457 DOI: 10.1038/s41598-021-92842-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
During vocal communication, the spectro-temporal structure of vocalizations conveys important contextual information. Bats excel in the use of sounds for echolocation by meticulous encoding of signals in the temporal domain. We therefore hypothesized that for social communication as well, bats would excel at detecting minute distortions in the spectro-temporal structure of calls. To test this hypothesis, we systematically introduced spectro-temporal distortion to communication calls of Phyllostomus discolor bats. We broke down each call into windows of the same length and randomized the phase spectrum inside each window. The overall degree of spectro-temporal distortion in communication calls increased with window length. Modelling the bat auditory periphery revealed that cochlear mechanisms allow discrimination of fast spectro-temporal envelopes. We evaluated model predictions with experimental psychophysical and neurophysiological data. We first assessed bats' performance in discriminating original versions of calls from increasingly distorted versions of the same calls. We further examined cortical responses to determine additional specializations for call discrimination at the cortical level. Psychophysical and cortical responses concurred with model predictions, revealing discrimination thresholds in the range of 8-15 ms randomization-window length. Our data suggest that specialized cortical areas are not necessary to impart psychophysical resilience to temporal distortion in communication calls.
Collapse
Affiliation(s)
- Stephen Gareth Hörpel
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising, Germany.
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| | - A Leonie Baier
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising, Germany
- Department Biology II, Ludwig Maximilians University Munich, Großhaderner Strasse 2, 82152, Martinsried, Germany
| | - Herbert Peremans
- Department of Engineering Management, Faculty of Business and Economics, University of Antwerp, 2000, Antwerp, Belgium
| | - Jonas Reijniers
- Department of Engineering Management, Faculty of Business and Economics, University of Antwerp, 2000, Antwerp, Belgium
| | - Lutz Wiegrebe
- Department Biology II, Ludwig Maximilians University Munich, Großhaderner Strasse 2, 82152, Martinsried, Germany
| | - Uwe Firzlaff
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising, Germany
| |
Collapse
|
14
|
González-Palomares E, López-Jury L, Wetekam J, Kiai A, García-Rosales F, Hechavarria JC. Male Carollia perspicillata bats call more than females in a distressful context. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202336. [PMID: 34040789 PMCID: PMC8113905 DOI: 10.1098/rsos.202336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Distress calls are a vocalization type widespread across the animal kingdom, emitted when the animals are under duress, e.g. when captured by a predator. Here, we report on an observation we came across serendipitously while recording distress calls from the bat species Carollia perspicillata, i.e. the existence of sex difference in the distress calling behaviour of this species. We show that in C. perspicillata bats, males are more likely to produce distress vocalizations than females when hand-held. Male bats call more, their calls are louder, harsher (faster amplitude modulated) and cover lower carrier frequencies than female vocalizations. We discuss our results within a framework of potential hormonal, neurobiological and behavioural differences that could explain our findings, and open multiple paths to continue the study of sex-related differences in vocal behaviour in bats.
Collapse
Affiliation(s)
| | - Luciana López-Jury
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Johannes Wetekam
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Ava Kiai
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Francisco García-Rosales
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Julio C. Hechavarria
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Holz N, Larrouy-Maestri P, Poeppel D. The paradoxical role of emotional intensity in the perception of vocal affect. Sci Rep 2021; 11:9663. [PMID: 33958630 PMCID: PMC8102532 DOI: 10.1038/s41598-021-88431-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/09/2021] [Indexed: 11/08/2022] Open
Abstract
Vocalizations including laughter, cries, moans, or screams constitute a potent source of information about the affective states of others. It is typically conjectured that the higher the intensity of the expressed emotion, the better the classification of affective information. However, attempts to map the relation between affective intensity and inferred meaning are controversial. Based on a newly developed stimulus database of carefully validated non-speech expressions ranging across the entire intensity spectrum from low to peak, we show that the intuition is false. Based on three experiments (N = 90), we demonstrate that intensity in fact has a paradoxical role. Participants were asked to rate and classify the authenticity, intensity and emotion, as well as valence and arousal of the wide range of vocalizations. Listeners are clearly able to infer expressed intensity and arousal; in contrast, and surprisingly, emotion category and valence have a perceptual sweet spot: moderate and strong emotions are clearly categorized, but peak emotions are maximally ambiguous. This finding, which converges with related observations from visual experiments, raises interesting theoretical challenges for the emotion communication literature.
Collapse
Affiliation(s)
- N Holz
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt/M, Germany.
| | - P Larrouy-Maestri
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt/M, Germany
- Max Planck NYU Center for Language, Music, and Emotion, Frankfurt/M, Germany
| | - D Poeppel
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt/M, Germany
- Max Planck NYU Center for Language, Music, and Emotion, Frankfurt/M, Germany
- Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|