1
|
Robins PL, Makaroff SN, Dib M, Lisanby SH, Deng ZD. Electric field characteristics of rotating permanent magnet stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.06.24302359. [PMID: 38370769 PMCID: PMC10871468 DOI: 10.1101/2024.02.06.24302359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Neurostimulation devices that use rotating permanent magnets are being explored for their potential therapeutic benefits in patients with psychiatric and neurological disorders. This study aims to characterize the electric field (E-field) for ten configurations of rotating magnets using finite element analysis and phantom measurements. Various configurations were modeled, including single or multiple magnets, bipolar or multipolar magnets, rotated at 10, 13.3, and 400 Hz. E-field strengths were also measured using a hollow sphere ( r = 9.2 cm) filled with a 0.9% sodium chloride solution and with a dipole probe. The E-field spatial distribution is determined by the magnets' dimensions, number of poles, direction of the magnetization, and axis of rotation, while the E-field strength is determined by the magnets' rotational frequency and magnetic field strength. The induced E-field strength on the surface of the head ranged between 0.0092 and 0.59 V/m. At the range of rotational frequencies applied, the induced E-field strengths were approximately an order or two of magnitude lower than those delivered by conventional transcranial magnetic stimulation. The impact of rotational frequency on E-field strength represents a previously unrecognized confound in clinical trials that seek to personalize stimulation frequency to individual neural oscillations and may represent a mechanism to explain some clinical trial results.
Collapse
|
2
|
Cruciani A, Pellegrino G, Todisco A, Motolese F, Sferruzzi M, Norata D, Santoro F, Musumeci G, Rossi M, Pilato F, Di Lazzaro V, Capone F. High-frequency transcranial alternating current stimulation matching individual frequency of somatosensory evoked high-frequency oscillations can modulate the somatosensory system through thalamocortical pathway. Cereb Cortex 2024; 34:bhad481. [PMID: 38100323 DOI: 10.1093/cercor/bhad481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
tACS (transcranial alternating current stimulation) is a technique for modulating brain activity through electrical current. Its effects depend on cortical entrainment, which is most effective when transcranial alternating current stimulation matches the brain's natural rhythm. High-frequency oscillations produced by external stimuli are useful for studying the somatosensory pathway. Our study aims to explore transcranial alternating current stimulation's impact on the somatosensory system when synchronized with individual high-frequency oscillation frequencies. We conducted a randomized, sham-controlled study with 14 healthy participants. The study had three phases: Individualized transcranial alternating current stimulation (matching the individual's high-frequency oscillation rhythm), Standard transcranial alternating current stimulation (600 Hz), and sham stimulation. We measured early and late HFO components after median nerve electrical stimulation at three time points: before (T0), immediately after (T1), and 10 min after transcranial alternating current stimulation (T2). Compared to Sham and Standard stimulation Individualized transcranial alternating current stimulation significantly enhanced high-frequency oscillations, especially the early component, immediately after stimulation and for at least 15 min. No other effects were observed for other high-frequency oscillation measures. In summary, our study provides initial evidence that transcranial alternating current stimulation synchronized with an individual's high-frequency oscillation frequency can precisely and time-specifically modulate thalamocortical activity. These insights may pave the way for innovative, personalized neuromodulation methods for the somatosensory system.
Collapse
Affiliation(s)
- Alessandro Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Antonio Todisco
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Marco Sferruzzi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Davide Norata
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
- Neurological Clinic, Department of Experimental and Clinical Medicine (DIMSC), Marche Polytechnic University, 60121 Ancona, Italy
| | - Francesca Santoro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Gabriella Musumeci
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Mariagrazia Rossi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21-00128, Italy
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo Roma 200-00128, Italy
| |
Collapse
|
3
|
Jaberzadeh S, Zoghi M. Exploring sensory, motor, and pain responses as potential side or therapeutic effects of sub-2 mA, 400 Hz transcranial pulsed current stimulation. PLoS One 2023; 18:e0290137. [PMID: 38091312 PMCID: PMC10718437 DOI: 10.1371/journal.pone.0290137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Various brain stimulation devices capable of generating high-frequency currents are readily available. However, our comprehension of the potential side or therapeutic effects associated with high-frequency transcranial pulsed current stimulation (tPCS), particularly concerning the new 400 Hz tPCS device, AscenZ-IV Stimulator, developed by AscenZion Neuromodulation Co. Pte. Ltd. in Singapore, remains incomplete. OBJECTIVE This study examines preliminary parameters for the safe and comfortable application of 400 Hz tPCS at intensities below 2 mA. METHODS In a cross-sectional study, 45 healthy participants underwent sub-2 mA 400 Hz tPCS to assess sensory, motor, and pain thresholds on the dominant side. Study 1 (N = 15) targeted the primary motor cortex of the right-hand area, while study 2 (N = 30) focused on the back of the right forearm. RESULTS Study one showed that increasing the current intensity gradually resulted in no responses at sub-0.3 mA levels, but higher intensities (p < 0.001) induced sensory perception and pain responses. Study two replicated these findings and additionally induced motor responses along with the sensory and pain responses. CONCLUSION Despite the theoretical classification of tPCS as a subsensory level of stimulation, and the expectation that individuals receiving this type of current should not typically feel its application on the body, this high-frequency tPCS device generates different levels of stimulation due to the physiological phenomenon known as temporal summation. These novel levels of stimulation could be viewed as either potential "side-effects" of high frequency tPCS or as additional "therapeutic benefits". This dual capacity may position the device as one that generates both neuromodulatory and neurostimulatory currents. Comprehensive comprehension of this is vital for the development of therapeutic protocols that incorporate high-frequency tPCS.
Collapse
Affiliation(s)
- Shapour Jaberzadeh
- Department of Physiotherapy, Monash Neuromodulation Research Unit, Monash University, Melbourne, Victoria, Australia
| | - Maryam Zoghi
- Discipline of Physiotherapy, Federation University, Churchill, Victoria, Australia
| |
Collapse
|
4
|
Calvert GHM, Carson RG. Induction of interhemispheric facilitation by short bursts of transcranial alternating current stimulation. Neurosci Lett 2023; 803:137190. [PMID: 36921664 DOI: 10.1016/j.neulet.2023.137190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
Interhemispheric facilitation (IHF) describes potentiation of motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over primary motor cortex (M1), when they are preceded (3-6 ms) by conditioning TMS below motor threshold (MT) delivered over the opposite M1. This effect is however obtained only when the conditioning stimulation is sufficiently circumscribed. In paired associative protocols, (500 ms) bursts of 140 Hz transcranial alternating current stimulation (tACS) interact with the state of neural circuits in the opposite hemisphere in a similar manner to sub-threshold TMS. We hypothesised that tACS applied over M1 would elevate the amplitudes of MEPs elicited by suprathreshold TMS applied 6 ms later over the opposite M1. Thirty healthy right-handed participants were tested. In a control condition, MEPs were recorded in right flexor carpi radialis (rFCR) following 120% resting MT TMS over left M1. In 11 experimental conditions, 1 mA (peak-to-peak) 140 Hz (30, 100, 500 ms) or 670 Hz (6, 12, 100, 500 ms) tACS, or 100-640 Hz (6, 12, 100, 500 ms) transcranial random noise stimulation (tRNS), was delivered over right M1, 6 ms in advance of the TMS. IHF was obtained by conditioning with 30 ms (but not 100 or 500 ms) 140 Hz tACS. The magnitude of IHF (12% increase; d = 0.56 (0.21-0.98)) was within the range reported for dual-coil TMS studies. Conditioning by 670 Hz tACS or tRNS had no effect. Our findings indicate that short bursts of 140 Hz tACS, applied over M1, have distributed effects similar to those of subthreshold TMS.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
5
|
Liu L, Ding M, Wu J, Zhang Y, Guo S, Wang N, Wang H, Yu K, Weng Y, Luo L, Zhang J, Zhang Q, Qiu K, Wu Y, Xiao X, Zhang Q. Design and evaluation of a rodent-specific focal transcranial magnetic stimulation coil with the custom shielding application in rats. Front Neurosci 2023; 17:1129590. [PMID: 37139516 PMCID: PMC10150080 DOI: 10.3389/fnins.2023.1129590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Repetitive TMS has been used as an alternative treatment for various neurological disorders. However, most TMS mechanism studies in rodents have been based on the whole brain stimulation, the lack of rodent-specific focal TMS coils restricts the proper translation of human TMS protocols to animal models. In this study, we designed a new shielding device, which was made of high magnetic permeability material, to enhance the spatial focus of animal-use TMS coils. With the finite element method, we analyzed the electromagnetic field of the coil with and without the shielding device. Furthermore, to assess the shielding effect in rodents, we compared the c-fos expression, the ALFF and ReHo values in different groups following a 15 min 5 Hz rTMS paradigm. We found that a smaller focality with an identical core stimulation intensity was achieved in the shielding device. The 1 T magnetic field was reduced from 19.1 mm to 13 mm in diameter, and 7.5 to 5.6 mm in depth. However, the core magnetic field over 1.5 T was almost the same. Meanwhile, the area of electric field was reduced from 4.68 cm2 to 4.19 cm2, and 3.8 mm to 2.6 mm in depth. Similar to this biomimetic data, the c-fos expression, the ALFF and ReHo values showed more limited cortex activation with the use of the shielding device. However, compared to the rTMS group without the shielding application, more subcortical regions, like the striatum (CPu), the hippocampus, the thalamus, and the hypothalamus were also activated in the shielding group. This indicated that more deep stimulation may be achieved by the shielding device. Generally, compared with the commercial rodents' TMS coil (15 mm in diameter), TMS coils with the shielding device achieved a better focality (~6 mm in diameter) by reducing at least 30% of the magnetic and electric field. This shielding device may provide a useful tool for further TMS studies in rodents, especially for more specific brain area stimulation.
Collapse
Affiliation(s)
- Li Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Ding
- Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Junfa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Shaoqian Guo
- Nanjing Vishee Medical Technology Co., Ltd., Nanjing, China
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Kewei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanfeng Weng
- Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Lu Luo
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Zhang
- Nanjing Vishee Medical Technology Co., Ltd., Nanjing, China
| | - Kai Qiu
- Nanjing Vishee Medical Technology Co., Ltd., Nanjing, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yi Wu,
| | - Xiao Xiao
- Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Xiao Xiao,
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Qun Zhang,
| |
Collapse
|
6
|
Fabbrini A, Guerra A, Giangrosso M, Manzo N, Leodori G, Pasqualetti P, Conte A, Di Lazzaro V, Berardelli A. Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner. Neuroimage 2022; 254:119119. [PMID: 35321858 DOI: 10.1016/j.neuroimage.2022.119119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/16/2022] [Accepted: 03/19/2022] [Indexed: 10/18/2022] Open
Abstract
Neural oscillations can be modulated by non-invasive brain stimulation techniques, including transcranial alternating current stimulation (tACS). However, direct evidence of tACS effects at the cortical level in humans is still limited. In a tACS-electroencephalography co-registration setup, we investigated the ability of tACS to modulate cortical somatosensory information processing as assessed by somatosensory-evoked potentials (SEPs). To better elucidate the neural substrates of possible tACS effects we also recorded peripheral and spinal SEPs components, high-frequency oscillations (HFOs), and long-latency reflexes (LLRs). Finally, we studied whether changes were limited to the stimulation period or persisted thereafter. SEPs, HFOs, and LLRs were recorded during tACS applied at individual mu and beta frequencies and at the theta frequency over the primary somatosensory cortex (S1). Sham-tACS was used as a control condition. In a separate experiment, we assessed the time course of mu-tACS effects by recording SEPs before (T0), during (T1), and 1 min (T2) and 10 min (T3) after stimulation. Mu-tACS increased the amplitude of the N20 component of SEPs compared to both sham and theta-tACS. No differences were found between sham, beta-, and theta-tACS conditions. Also, peripheral and spinal SEPs, P25, HFOs, and LLRs did not change during tACS. Finally, mu-tACS-induced modulation of N20 amplitude specifically occurred during stimulation (T1) and vanished afterwards (i.e., at T2 and T3). Our findings suggest that TACS applied at the individual mu frequency is able to modulate early somatosensory information processing at the S1 level and the effect is limited to the stimulation period.
Collapse
Affiliation(s)
- Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Andrea Guerra
- IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Margherita Giangrosso
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Nicoletta Manzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Patrizio Pasqualetti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Via Álvaro Del Portillo 21, Rome 00128, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy.
| |
Collapse
|
7
|
Ogata K, Nakazono H, Ikeda T, Oka SI, Goto Y, Tobimatsu S. After-Effects of Intermittent Theta-Burst Stimulation Are Differentially and Phase-Dependently Suppressed by α- and β-Frequency Transcranial Alternating Current Stimulation. Front Hum Neurosci 2021; 15:750329. [PMID: 34867243 PMCID: PMC8636087 DOI: 10.3389/fnhum.2021.750329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Intermittent theta-burst stimulation (iTBS) using transcranial magnetic stimulation (TMS) is known to produce excitatory after-effects over the primary motor cortex (M1). Recently, transcranial alternating current stimulation (tACS) at 10 Hz (α) and 20 Hz (β) have been shown to modulate M1 excitability in a phase-dependent manner. Therefore, we hypothesized that tACS would modulate the after-effects of iTBS depending on the stimulation frequency and phase. To test our hypothesis, we examined the effects of α- and β-tACS on iTBS using motor evoked potentials (MEPs). Eighteen and thirteen healthy participants were recruited for α and β tACS conditions, respectively. tACS electrodes were attached over the left M1 and Pz. iTBS over left M1 was performed concurrently with tACS. The first pulse of the triple-pulse burst of iTBS was controlled to match the peak (90°) or trough (270°) phase of the tACS. A sham tACS condition was used as a control in which iTBS was administered without tACS. Thus, each participant was tested in three conditions: the peak and trough of the tACS phases and sham tACS. As a result, MEPs were enhanced after iTBS without tACS (sham condition), as observed in previous studies. α-tACS suppressed iTBS effects at the peak phase but not at the trough phase, while β-tACS suppressed the effects at both phases. Thus, although both types of tACS inhibited the facilitatory effects of iTBS, only α-tACS did so in a phase-dependent manner. Phase-dependent inhibition by α-tACS is analogous to our previous finding in which α-tACS inhibited MEPs online at the peak condition. Conversely, β-tACS reduced the effects of iTBS irrespective of its phase. The coupling of brain oscillations and tACS rhythms is considered important in the generation of spike-timing-dependent plasticity. Additionally, the coupling of θ and γ oscillations is assumed to be important for iTBS induction through long-term potentiation (LTP). Therefore, excessive coupling between β oscillations induced by tACS and γ or θ oscillations induced by iTBS might disturb the coupling of θ and γ oscillations during iTBS. To conclude, the action of iTBS is differentially modulated by neuronal oscillations depending on whether α- or β-tACS is applied.
Collapse
Affiliation(s)
- Katsuya Ogata
- Department of Pharmacy, School of Pharmaceutical Sciences at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Takuro Ikeda
- Department of Physical Therapy, School of Health Sciences, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Shin-Ichiro Oka
- Department of Physical Therapy, School of Health Sciences, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Yoshinobu Goto
- School of Medicine, International University of Health and Welfare, Naritaa, Japan
| | - Shozo Tobimatsu
- Department of Orthoptics, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
8
|
Guerra A, Rocchi L, Grego A, Berardi F, Luisi C, Ferreri F. Contribution of TMS and TMS-EEG to the Understanding of Mechanisms Underlying Physiological Brain Aging. Brain Sci 2021; 11:405. [PMID: 33810206 PMCID: PMC8004753 DOI: 10.3390/brainsci11030405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the human brain, aging is characterized by progressive neuronal loss, leading to disruption of synapses and to a degree of failure in neurotransmission. However, there is increasing evidence to support the notion that the aged brain has a remarkable ability to reorganize itself, with the aim of preserving its physiological activity. It is important to develop objective markers able to characterize the biological processes underlying brain aging in the intact human, and to distinguish them from brain degeneration associated with many neurological diseases. Transcranial magnetic stimulation (TMS), coupled with electromyography or electroencephalography (EEG), is particularly suited to this aim, due to the functional nature of the information provided, and thanks to the ease with which it can be integrated with behavioral manipulation. In this review, we aimed to provide up to date information about the role of TMS and TMS-EEG in the investigation of brain aging. In particular, we focused on data about cortical excitability, connectivity and plasticity, obtained by using readouts such as motor evoked potentials and transcranial evoked potentials. Overall, findings in the literature support an important potential contribution of TMS to the understanding of the mechanisms underlying normal brain aging. Further studies are needed to expand the current body of information and to assess the applicability of TMS findings in the clinical setting.
Collapse
Affiliation(s)
| | - Lorenzo Rocchi
- Department of Clinical and Movements Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alberto Grego
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Francesca Berardi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Concetta Luisi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Florinda Ferreri
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
9
|
Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Sci Rep 2021; 11:3854. [PMID: 33594133 PMCID: PMC7887242 DOI: 10.1038/s41598-021-83449-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/05/2021] [Indexed: 01/31/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows interaction with endogenous cortical oscillatory rhythms by means of external sinusoidal potentials. The physiological mechanisms underlying tACS effects are still under debate. Whereas online (e.g., ongoing) tACS over the motor cortex induces robust state-, phase- and frequency-dependent effects on cortical excitability, the offline effects (i.e. after-effects) of tACS are less clear. Here, we explored online and offline effects of tACS in two single-blind, sham-controlled experiments. In both experiments we used neuronavigated transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) as a probe to index changes of cortical excitability and delivered M1 tACS at 10 Hz (alpha), 20 Hz (beta) and sham (30 s of low-frequency transcranial random noise stimulation; tRNS). Corticospinal excitability was measured by single pulse TMS-induced motor evoked potentials (MEPs). tACS was delivered online in Experiment 1 and offline in Experiment 2. In Experiment 1, the increase of MEPs size was maximal with the 20 Hz stimulation, however in Experiment 2 neither the 10 Hz nor the 20 Hz stimulation induced tACS offline effects. These findings support the idea that tACS affects cortical excitability only during online application, at least when delivered on the scalp overlying M1, thereby contributing to the development of effective protocols that can be applied to clinical populations.
Collapse
|
10
|
Korai SA, Ranieri F, Di Lazzaro V, Papa M, Cirillo G. Neurobiological After-Effects of Low Intensity Transcranial Electric Stimulation of the Human Nervous System: From Basic Mechanisms to Metaplasticity. Front Neurol 2021; 12:587771. [PMID: 33658972 PMCID: PMC7917202 DOI: 10.3389/fneur.2021.587771] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Non-invasive low-intensity transcranial electrical stimulation (tES) of the brain is an evolving field that has brought remarkable attention in the past few decades for its ability to directly modulate specific brain functions. Neurobiological after-effects of tES seems to be related to changes in neuronal and synaptic excitability and plasticity, however mechanisms are still far from being elucidated. We aim to review recent results from in vitro and in vivo studies that highlight molecular and cellular mechanisms of transcranial direct (tDCS) and alternating (tACS) current stimulation. Changes in membrane potential and neural synchronization explain the ongoing and short-lasting effects of tES, while changes induced in existing proteins and new protein synthesis is required for long-lasting plastic changes (LTP/LTD). Glial cells, for decades supporting elements, are now considered constitutive part of the synapse and might contribute to the mechanisms of synaptic plasticity. This review brings into focus the neurobiological mechanisms and after-effects of tDCS and tACS from in vitro and in vivo studies, in both animals and humans, highlighting possible pathways for the development of targeted therapeutic applications.
Collapse
Affiliation(s)
- Sohaib Ali Korai
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federico Ranieri
- Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, University Campus Bio-Medico, Rome, Italy
| | - Michele Papa
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy.,ISBE Italy, SYSBIO Centre of Systems Biology, Milan, Italy
| | - Giovanni Cirillo
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy.,Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|