1
|
Dilek O, Telci D, Erkan-Candag H. Small-Molecule Probe for Imaging Oxidative Stress-Induced Carbonylation in Live Cells. Bio Protoc 2024; 14:e5112. [PMID: 39600976 PMCID: PMC11588574 DOI: 10.21769/bioprotoc.5112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
Protein carbonylation has been known as the major form of irreversible protein modifications and is also widely used as an indicator of oxidative stress in the biological environment. In the presence of oxidative stress, biological systems tend to produce large amounts of carbonyl moieties; these carbonyl groups do not have particular UV-Vis and fluorescence spectroscopic characteristics that we can differentiate, observe, and detect. Thus, their detection and quantification can only be performed using specific chemical probes. Commercially available fluorescent probes to detect specific carbonylation in biological systems have been used, but their chemical portfolio is still very limited. This protocol outlines the methods and procedures employed to synthesize a probe, (E,Z)-2-(2-(2-hydroxybenzylidene)hydrazonyl)-5-nitrophenol (2Hzin5NP), and assess its impact on carbonylation in human cells. The synthesis involves several steps, including the preparation of its hydrazone compounds mimicking cell carbonyls, 2-Hydrazinyl 5-nitrophenol, (E,Z)-2-(2-ethylidenehydrazonyl)-5-nitrophenol, and the final product (E,Z)-2-(2-(2-hydroxybenzylidene)hydrazonyl)-5-nitrophenol. The evaluation of fluorescence quantum yield and subsequent cell culture experiments are detailed for the investigation of 2Hzin5NP effects on cell proliferation and carbonylation. Key features • This protocol builds upon probe development using click chemistry method by Dilek et al. [1], and its biolabeling application in renal cancer cell lines. • The non-fluorescent probe has a fast reaction with carbonyl moieties at neutral pH to form a stable fluorescent product leading to a spectroscopic alteration. • Microscopic and fluorometric analyses can distinguish the exogenous and endogenous ROS-induced carbonylation profile in human dermal fibroblasts along with renal cell carcinoma. • Carbonylation level that differs in response to exogenous and endogenous stress in healthy and cancer cells can be detected by the newly synthesized fluorescent probe.
Collapse
Affiliation(s)
- Ozlem Dilek
- Department of Chemistry and Biochemistry, Institute for Advanced Biomedical Research, George Mason University, Manassas, VA, USA
| | - Dilek Telci
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Hazel Erkan-Candag
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Department of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse, Graz, Austria
| |
Collapse
|
2
|
Dilek O. Current Probes for Imaging Carbonylation in Cellular Systems and Their Relevance to Progression of Diseases. Technol Cancer Res Treat 2022; 21:15330338221137303. [PMID: 36345252 PMCID: PMC9647279 DOI: 10.1177/15330338221137303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oxidative stress resulted from reactive oxygen or nitrogen species in biological
systems has a significant role in the diagnosis/progression of several human
diseases. Human diseases associated with oxidative stress include Alzheimer's
disease, chronic lung disease, chronic renal failure, cancer, diabetes, and
fibrosis. In oxidative stress conditions, carbonylation process can be described
as one of the most common modifications in biomolecules that takes place in the
presence of carbonyl (C = O) groups which are introduced into molecules by
direct metal-catalyzed oxidation of certain amino acids or indirectly by
reaction with the oxidation of lipids and sugars. At a molecular cellular level,
carbonylation can cause some defective biological consequences or chemical
transformations in cells. During this process, specifically, carbonylated
proteins can be accumulated in cells and trigger to develop some diseases in
human body. The role of the accumulation of carbonylated proteins in the
progression of several diseases has also been reported in the literature, such
as neurodegenerative diseases, diabetes, obesity, aging, and cancer. Early
detection of carbonylation process is, therefore, very critical to monitor these
diseases at an early stage. Finding a suitable biomarker or probe is very
challenging due to the need for multiple criteria: high fluorescence efficiency,
stability, toxicity, and permeability. If they are designed with a good
strategy, these probes are highly effective in cell biology applications and
they can be used as good diagnostic tools for monitoring oxidative
stress-induced carbonylation in relevant diseases. This review highlights the
design and use of recent fluorescent probes for visualization of carbonylation
in cellular systems and the relationship between oxidative stress and carbonyl
species for causing long-term disease complications.
Collapse
Affiliation(s)
- Ozlem Dilek
- University of the District of Columbia, College of Arts and Sciences, Washington, DC, USA
| |
Collapse
|
3
|
Li Z, Chen Q, Wang J, Pan X, Lu W. Research Progress and Application of Bioorthogonal Reactions in Biomolecular Analysis and Disease Diagnosis. Top Curr Chem (Cham) 2021; 379:39. [PMID: 34590223 DOI: 10.1007/s41061-021-00352-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Bioorthogonal reactions are rapid, specific and high yield reactions that can be performed in in vivo microenvironments or simulated microenvironments. At present, the main biorthogonal reactions include Staudinger ligation, copper-catalyzed azide alkyne cycloaddition, strain-promoted [3 + 2] reaction, tetrazine ligation, metal-catalyzed coupling reaction and photo-induced biorthogonal reactions. To date, many reviews have reported that bioorthogonal reactions have been used widely as a powerful tool in the field of life sciences, such as in target recognition, drug discovery, drug activation, omics research, visualization of life processes or exogenous bacterial infection processes, signal transduction pathway research, chemical reaction dynamics analysis, disease diagnosis and treatment. In contrast, to date, few studies have investigated the application of bioorthogonal reactions in the analysis of biomacromolecules in vivo. Therefore, the application of bioorthogonal reactions in the analysis of proteins, nucleic acids, metabolites, enzyme activities and other endogenous molecules, and the determination of disease-related targets is reviewed. In addition, this review discusses the future development opportunities and challenges of biorthogonal reactions. This review presents an overview of recent advances for application in biomolecular analysis and disease diagnosis, with a focus on proteins, metabolites and RNA detection.
Collapse
Affiliation(s)
- Zilong Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qinhua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wen Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
4
|
Stevens KG, McFarlane LO, Platts K, O'Brien-Simpson N, Li W, Blencowe A, Trim PJ, Pukala TL. Retro Diels-Alder Fragmentation of Fulvene-Maleimide Bioconjugates for Mass Spectrometric Detection of Biomolecules. Anal Chem 2021; 93:12204-12212. [PMID: 34461717 DOI: 10.1021/acs.analchem.1c00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diels-Alder chemistry is a well-explored avenue for the synthesis of bioactive materials; however, its potential applications have recently expanded following the development of reactions that can be performed in buffered aqueous environments at low temperatures, including fulvene-maleimide [4 + 2] cycloadditions. In this study, we synthesized two novel amine-reactive fulvene linkers to demonstrate the application of this chemistry for generating mass spectrometry-cleavable labels ("mass tags"), which can be used for the labeling and detection of proteins. Successful conjugation of these linkers to maleimide-labeled peptides was observed at low temperatures in phosphate-buffered saline, allowing the non-destructive modification of proteins with such mass tags. The labile nature of fulvene-maleimide adducts in the gas phase also makes them suitable for both matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometric analysis. Unlike previous examples of MALDI mass tags, we show that fulvene-maleimide cycloaddition adducts fragment predictably upon gas-phase activation without the need for bulky photocleavable groups. Further exploration of this chemistry could therefore lead to new approaches for mass spectrometry-based bioassays.
Collapse
Affiliation(s)
- Katherine G Stevens
- Department of Chemistry, Faculty of Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Lewis O McFarlane
- Department of Chemistry, Faculty of Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Kirsten Platts
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia
| | - Neil O'Brien-Simpson
- Centre for Oral Health Research, The Melbourne Dental School and the Bio21 Institute, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| | - Wenyi Li
- Centre for Oral Health Research, The Melbourne Dental School and the Bio21 Institute, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia
| | - Paul J Trim
- Proteomics, Metabolomics and MS Imaging, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Tara L Pukala
- Department of Chemistry, Faculty of Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
5
|
Mukherjee K, Chio TI, Gu H, Sackett DL, Bane SL, Sever S. A Novel Fluorogenic Assay for the Detection of Nephrotoxin-Induced Oxidative Stress in Live Cells and Renal Tissue. ACS Sens 2021; 6:2523-2528. [PMID: 34214393 PMCID: PMC8314269 DOI: 10.1021/acssensors.1c00422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Drug-induced kidney
injury frequently leads to aborted clinical
trials and drug withdrawals. Sufficiently sensitive sensors capable
of detecting mild signs of chemical insult in cell-based screening
assays are critical to identifying and eliminating potential toxins
in the preclinical stage. Oxidative stress is a common early manifestation
of chemical toxicity, and biomolecule carbonylation is an irreversible
repercussion of oxidative stress. Here, we present a novel fluorogenic
assay using a sensor, TFCH, that responds to biomolecule carbonylation
and efficiently detects modest forms of renal injury with much greater
sensitivity than standard assays for nephrotoxins. We demonstrate
that this sensor can be deployed in live kidney cells and in renal
tissue. Our robust assay may help inform preclinical decisions to
recall unsafe drug candidates. The application of this sensor in identifying
and analyzing diverse pathologies is envisioned.
Collapse
Affiliation(s)
- Kamalika Mukherjee
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Tak Ian Chio
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Han Gu
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Dan L. Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Susan L. Bane
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Sanja Sever
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|