1
|
Nakajima T, Hoshino K, Yamamoto H, Kaneko K, Okano Y, Takashiri M. Stretchable and Flexible Painted Thermoelectric Generators on Japanese Paper Using Inks Dispersed with P- and N-Type Single-Walled Carbon Nanotubes. SENSORS (BASEL, SWITZERLAND) 2024; 24:2946. [PMID: 38733055 PMCID: PMC11086293 DOI: 10.3390/s24092946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
As power sources for Internet-of-Things sensors, thermoelectric generators must exhibit compactness, flexibility, and low manufacturing costs. Stretchable and flexible painted thermoelectric generators were fabricated on Japanese paper using inks with dispersed p- and n-type single-walled carbon nanotubes (SWCNTs). The p- and n-type SWCNT inks were dispersed using the anionic surfactant of sodium dodecylbenzene sulfonate and the cationic surfactant of dimethyldioctadecylammonium chloride, respectively. The bundle diameters of the p- and n-type SWCNT layers painted on Japanese paper differed significantly; however, the crystallinities of both types of layers were almost the same. The thermoelectric properties of both types of layers exhibited mostly the same values at 30 °C; however, the properties, particularly the electrical conductivity, of the n-type layer increased linearly, and of the p-type layer decreased as the temperature increased. The p- and n-type SWCNT inks were used to paint striped patterns on Japanese paper. By folding at the boundaries of the patterns, painted generators can shrink and expand, even on curved surfaces. The painted generator (length: 145 mm, height: 13 mm) exhibited an output voltage of 10.4 mV and a maximum power of 0.21 μW with a temperature difference of 64 K at 120 °C on the hot side.
Collapse
Affiliation(s)
| | | | | | | | | | - Masayuki Takashiri
- Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Kanagawa, Japan
| |
Collapse
|
2
|
Eguchi R, Hoshino K, Takashiri M. Sb 2Te 3 nanoparticle-containing single-walled carbon nanotube films coated with Sb 2Te 3 electrodeposited layers for thermoelectric applications. Sci Rep 2023; 13:5783. [PMID: 37031246 PMCID: PMC10082793 DOI: 10.1038/s41598-023-33022-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/06/2023] [Indexed: 04/10/2023] Open
Abstract
Single-walled carbon nanotubes (SWCNTs) are promising thermoelectric materials owing to their flexibility and excellent durability when exposed to heat and chemicals. Thus, they are expected to be used in power supplies for various sensors. However, their thermoelectric performances are inferior to those of inorganic thermoelectric materials. To improve the thermoelectric performance while maintaining the excellent characteristics of SWCNTs, a novel approach to form inorganic thermoelectric layers on the SWCNT bundle surfaces using electrodeposition is proposed. We synthesized Sb2Te3 nanoparticle-containing SWCNT films and coated them with electrodeposited Sb2Te3 layers. The Sb2Te3 nanoparticles were synthesized via a spontaneous redox reaction, which were then added to a SWCNT dispersion solution, and films were produced via vacuum filtration. At higher nanoparticle contents in the films, the Sb2Te3 electrodeposited layers completely covered the SWCNT bundles owing to the increase in the concentration of precursor ions near the SWCNT bundle surface, which in turn was the result of melted nanoparticles. The thermoelectric performance improved, and the maximum power factor at approximately 25 °C was 59.5 µW/(m K2), which was 4.7 times higher than that of the normal SWCNT film. These findings provide valuable insights for designing and fabricating high-performance flexible thermoelectric materials.
Collapse
Affiliation(s)
- Rikuo Eguchi
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Koki Hoshino
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Masayuki Takashiri
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan.
| |
Collapse
|
3
|
Chiba T, Yabuki H, Takashiri M. High thermoelectric performance of flexible nanocomposite films based on Bi 2Te 3 nanoplates and carbon nanotubes selected using ultracentrifugation. Sci Rep 2023; 13:3010. [PMID: 36810907 PMCID: PMC9945460 DOI: 10.1038/s41598-023-30175-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Thermoelectric generators with flexibility and high performance near 300 K have the potential to be employed in self-supporting power supplies for Internet of Things (IoT) devices. Bismuth telluride (Bi2Te3) exhibits high thermoelectric performance, and single-walled carbon nanotubes (SWCNTs) show excellent flexibility. Therefore, composites of Bi2Te3 and SWCNTs should exhibit an optimal structure and high performance. In this study, flexible nanocomposite films based on Bi2Te3 nanoplates and SWCNTs were prepared by drop casting on a flexible sheet, followed by thermal annealing. Bi2Te3 nanoplates were synthesized using the solvothermal method, and SWCNTs were synthesized using the super-growth method. To improve the thermoelectric properties of the SWCNTs, ultracentrifugation with a surfactant was performed to selectively obtain suitable SWCNTs. This process selects thin and long SWCNTs but does not consider the crystallinity, chirality distribution, and diameters. A film consisting of Bi2Te3 nanoplates and the thin and long SWCNTs exhibited high electrical conductivity, which was six times higher than that of a film with SWCNTs obtained without ultracentrifugation; this is because the SWCNTs uniformly connected the surrounding nanoplates. The power factor was 6.3 μW/(cm K2), revealing that this is one of the best-performing flexible nanocomposite films. The findings of this study can support the application of flexible nanocomposite films in thermoelectric generators to provide self-supporting power supplies for IoT devices.
Collapse
Affiliation(s)
- Tomoyuki Chiba
- grid.265061.60000 0001 1516 6626Department of Materials Science, Tokai University, Hiratsuka, Kanagawa 259-1292 Japan
| | - Hayato Yabuki
- grid.265061.60000 0001 1516 6626Department of Materials Science, Tokai University, Hiratsuka, Kanagawa 259-1292 Japan
| | - Masayuki Takashiri
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan.
| |
Collapse
|
4
|
Amma Y, Miura K, Nagata S, Nishi T, Miyake S, Miyazaki K, Takashiri M. Ultra-long air-stability of n-type carbon nanotube films with low thermal conductivity and all-carbon thermoelectric generators. Sci Rep 2022; 12:21603. [PMCID: PMC9748887 DOI: 10.1038/s41598-022-26108-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractThis report presents n-type single-walled carbon nanotubes (SWCNT) films with ultra-long air stability using a cationic surfactant and demonstrates that the n-type Seebeck coefficient can be maintained for more than two years, which is the highest stability reported thus far to the best of our knowledge. Furthermore, the SWCNT films exhibit an extremely low thermal conductivity of 0.62 ± 0.08 W/(m·K) in the in-plane direction, which is very useful for thin-film TEGs. We fabricated all-carbon-nanotube TEGs, which use p-type SWCNT films and the n-type SWCNT films developed, and their air-stability was investigated. The TEGs did not degrade for 160 days and exhibited an output voltage of 24 mV, with a maximum power of 0.4 µW at a temperature difference of 60 K. These results open a pathway to enable the widespread use of carbon nanotube TEGs as power sources in IoT sensors.
Collapse
|
5
|
Bicyclic-ring base doping induces n-type conduction in carbon nanotubes with outstanding thermal stability in air. Nat Commun 2022; 13:3517. [PMID: 35725579 PMCID: PMC9209455 DOI: 10.1038/s41467-022-31179-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Abstract
The preparation of air and thermally stable n-type carbon nanotubes is desirable for their further implementation in electronic and energy devices that rely on both p- and n-type material. Here, a series of guanidine and amidine bases with bicyclic-ring structures are used as n-doping reagents. Aided by their rigid alkyl functionality and stable conjugate acid structure, these organic superbases can easily reduce carbon nanotubes. n-Type nanotubes doped with guanidine bases show excellent thermal stability in air, lasting for more than 6 months at 100 °C. As an example of energy device, a thermoelectric p/n junction module is constructed with a power output of ca. 4.7 μW from a temperature difference of 40 °C.
Collapse
|
6
|
Air stability of n-type single-walled carbon nanotube films with anionic surfactants investigated using molecular dynamics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Chiba T, Amma Y, Takashiri M. Heat source free water floating carbon nanotube thermoelectric generators. Sci Rep 2021; 11:14707. [PMID: 34282253 PMCID: PMC8289987 DOI: 10.1038/s41598-021-94242-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/08/2021] [Indexed: 11/18/2022] Open
Abstract
Thermoelectric generators (TEGs) produce electric power from environmental heat energy and are expected to play a key role in powering the Internet of things. However, they require a heat source to create a stable and irreversible temperature gradient. Overcoming these restrictions will allow the use of TEGs to proliferate. Therefore, we propose heat source-free water-floating carbon nanotube (CNT) TEGs. Output voltage and power are generated by the temperature gradient in the CNT films in which water pumping via capillary action leads to evaporation-induced cooling in selected areas. Furthermore, the output voltage and power increase when the films are exposed to sunlight and wind flow. These water-floating CNT TEGs demonstrate a pathway for developing wireless monitoring systems for water environments.
Collapse
Affiliation(s)
- Tomoyuki Chiba
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Yuki Amma
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Masayuki Takashiri
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan.
| |
Collapse
|
8
|
Yonezawa S, Chiba T, Seki Y, Takashiri M. Origin of n type properties in single wall carbon nanotube films with anionic surfactants investigated by experimental and theoretical analyses. Sci Rep 2021; 11:5758. [PMID: 33707619 PMCID: PMC7952386 DOI: 10.1038/s41598-021-85248-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/15/2021] [Indexed: 11/09/2022] Open
Abstract
We investigated the origin of n-type thermoelectric properties in single-wall carbon nanotube (SWCNT) films with anionic surfactants via experimental analyses and first-principles calculations. Several types of anionic surfactants were employed to fabricate SWCNT films via drop-casting, followed by heat treatment at various temperatures. In particular, SWCNT films with sodium dodecylbenzene sulfonate (SDBS) surfactant heated to 350 °C exhibited a longer retention period, wherein the n-type Seebeck coefficient lasted for a maximum of 35 days. In x-ray photoelectron spectroscopy, SWCNT films with SDBS surfactant exhibited a larger amount of sodium than oxygen on the SWCNT surface. The electronic band structure and density of states of SWCNTs with oxygen atoms, oxygen molecules, water molecules, sulfur atoms, and sodium atoms were analyzed using first-principles calculations. The calculations showed that sodium atoms and oxygen molecules moved the Fermi level closer to the conduction and valence bands, respectively. The water molecules, oxygen, and sulfur atoms did not affect the Fermi level. Therefore, SWCNT films exhibited n-type thermoelectric properties when the interaction between the sodium atoms and the SWCNTs was larger than that between the oxygen molecules and the SWCNTs.
Collapse
Affiliation(s)
- Susumu Yonezawa
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Tomoyuki Chiba
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Yuhei Seki
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Masayuki Takashiri
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan.
| |
Collapse
|
9
|
Chen X, Feng L, Yu P, Liu C, Lan J, Lin YH, Yang X. Flexible Thermoelectric Films Based on Bi 2Te 3 Nanosheets and Carbon Nanotube Network with High n-Type Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5451-5459. [PMID: 33470114 DOI: 10.1021/acsami.0c21396] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flexible thermoelectric materials and devices have gained wide attention due to their capability to stably and directly convert body heat or industrial waste heat into electric energy. Many research and synthetic methods of flexible high-performance p-type thermoelectric materials have made great progress. However, their counterpart flexible n-type organic thermoelectric materials are seldom studied due to the complex synthesis of conductive polymer and poor stability of n-type materials. In this work, bismuth tellurium (Bi2Te3) nanosheets are in situ grown on single-walled carbon nanotubes (SWCNTs) assisted by poly(vinylpyrrolidone) (PVP). A series of flexible SWCNTs@Bi2Te3 composite films on poly(vinylidene fluoride) (PVDF) membranes are obtained by vacuum-assisted filtration. The high electrical conductivity of 253.9 S/cm, and a corresponding power factor (PF) of 57.8 μW/m·K2 is obtained at 386 K for SWCNTs@Bi2Te3-0.8 film. Moreover, high electrical conductivity retention of 90% can be maintained after a 300-cycle bending test and no obvious attenuation can be detected after being stored in an Ar atmosphere for 9 months, which exhibits good flexibility and excellent stability of the SWCNTs@Bi2Te3 composite films. This work shows a convenient method to fabricate n-type and flexible thermoelectric composite film and further promotes the practical application of n-type flexible thermoelectric materials.
Collapse
Affiliation(s)
- Xiaona Chen
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Linan Feng
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Penglu Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chan Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jinle Lan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuan-Hua Lin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
10
|
Evaluation of Thermoelectric Performance of Bi2Te3 Films as a Function of Temperature Increase Rate during Heat Treatment. COATINGS 2021. [DOI: 10.3390/coatings11010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thin film thermoelectric generators are expected to be applied as power supplies for various Internet of Thing devices owing to their small size and flexible structure. However, the primary challenges of thin film thermoelectric generators are to improve their thermoelectric performance and reduce their manufacturing cost. Hence, Bi2Te3 thin films were deposited using direct current magnetron sputtering, followed by heat treatment at 573 K with different temperature increase rates ranging from 4 to 16 K/min. The in-plane Seebeck coefficient and electrical conductivity were measured at approximately 293 K. The in-plane thermal conductivity was calculated using the models to determine the power factor (PF) and dimensionless figure of merit (ZT). The temperature increase rate clearly affected the atomic composition, crystal orientation, and lattice strains, but not the crystallite size. The PF and dimensionless ZT increased as the temperature increase rate increased. The highest PF of 17.5 µW/(cm·K2) and ZT of 0.48 were achieved at a temperature increase rate of 16 K/min, while the unannealed thin film exhibited the lowest PF of 0.7 µW/(cm·K2) and ZT of 0.05. Therefore, this study demonstrated a method to enhance the thermoelectric performance of Bi2Te3 thin films by heat treatment at the appropriate temperature increase rate.
Collapse
|
11
|
Yabuki H, Yonezawa S, Eguchi R, Takashiri M. Flexible thermoelectric films formed using integrated nanocomposites with single-wall carbon nanotubes and Bi 2Te 3 nanoplates via solvothermal synthesis. Sci Rep 2020; 10:17031. [PMID: 33046770 PMCID: PMC7550342 DOI: 10.1038/s41598-020-73808-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Single-wall carbon nanotubes (SWCNTs) and Bi2Te3 nanoplates are very promising thermoelectric materials for energy harvesting. When these two materials are combined, the resulting nanocomposites exhibit high thermoelectric performance and excellent flexibility. However, simple mixing of these materials is not effective in realizing high performance. Therefore, we fabricated integrated nanocomposites by adding SWCNTs during solvothermal synthesis for the crystallization of Bi2Te3 nanoplates and prepared flexible integrated nanocomposite films by drop-casting. The integrated nanocomposite films exhibited high electrical conductivity and an n-type Seebeck coefficient owing to the low contact resistance between the nanoplates and SWCNTs. The maximum power factor was 1.38 μW/(cm K2), which was 23 times higher than that of a simple nanocomposite film formed by mixing SWCNTs during drop-casting, but excluding solvothermal synthesis. Moreover, the integrated nanocomposite films maintained their thermoelectric properties through 500 bending cycles.
Collapse
Affiliation(s)
- Hayato Yabuki
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Susumu Yonezawa
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Rikuo Eguchi
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Masayuki Takashiri
- Department of Materials Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan.
| |
Collapse
|