1
|
Yao J, Xu X, Gong K, Tu H, Xu Z, Ye S, Yu X, Lan Y, Weng H, Shi Y. Prognostic value of neutrophil count to albumin ratio in patients with decompensated cirrhosis. Sci Rep 2023; 13:20759. [PMID: 38007536 PMCID: PMC10676395 DOI: 10.1038/s41598-023-44842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/12/2023] [Indexed: 11/27/2023] Open
Abstract
Our study aimed to investigate the prognostic value of neutrophil count to albumin ratio (NAR) in predicting short-term mortality of patients with decompensated cirrhosis (DC). A total of 623 DC patients were recruited from a retrospective observational cohort study. They were admitted to our hospital from January 2014 to December 2015. NAR of each patient was calculated and analyzed for the association with 90-day liver transplantation-free (LT-free) outcome. The performance of NAR and the integrated model were tested by a receiver-operator curve (ROC) and C-index. The 90-day LT-free mortality of patients with DC was 10.6%. NAR was significantly higher in 90-day non-survivors than in survivors (The median: 1.73 vs 0.76, P < 0.001). A threshold of 1.40 of NAR differentiated patients with a high risk of death (27.45%) from those with a low risk (5.11%). By multivariate analysis, high NAR was independently associated with poor short-term prognosis (high group: 5.07 (2.78, 9.22)). NAR alone had an area under the ROC curve of 0.794 and C-index of 0.7789 (0.7287, 0.8291) in predicting 90-day mortality. The integrated MELD-NAR (iMELD) model had a higher area under the ROC (0.872) and C-index (0.8558 (0.8122, 0.8994)) than the original MELD in predicting 90-day mortality. NAR can be used as an independent predictor of poor outcomes for patients with DC during short-term follow-up.
Collapse
Affiliation(s)
- Junjie Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xianbin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Kai Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Huilan Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhaoyu Xu
- Bethune Third Clinical Medical College, Jilin University, Changchun, 132000, Jilin, China
| | - Shaoheng Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xia Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yan Lan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Haoda Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
2
|
Nishiguchi A, Taguchi T. Engineering thixotropic supramolecular gelatin-based hydrogel as an injectable scaffold for cell transplantation. Biomed Mater 2022; 18. [PMID: 36541468 DOI: 10.1088/1748-605x/aca501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Despite many efforts focusing on regenerative medicine, there are few clinically-available cell-delivery carriers to improve the efficacy of cell transplantation due to the lack of adequate scaffolds. Herein, we report an injectable scaffold composed of functionalized gelatin for application in cell transplantation. Injectable functionalized gelatin-based hydrogels crosslinked with reversible hydrogen bonding based on supramolecular chemistry were designed. The hydrogel exhibited thixotropy, enabling single syringe injection of cell-encapsulating hydrogels. Highly biocompatible and cell-adhesive hydrogels provide cellular scaffolds that promote cellular adhesion, spreading, and migration. Thein vivodegradation study revealed that the hydrogel gradually degraded for seven days, which may lead to prolonged retention of transplanted cells and efficient integration into host tissues. In volumetric muscle loss models of mice, cells were transplanted using hydrogels and proliferated in injured muscle tissues. Thixotropic and injectable hydrogels may serve as cell delivery scaffolds to improve graft survival in regenerative medicine.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
3
|
Kamatani T, Otsuka R, Murata T, Wada H, Takahashi T, Mori A, Murata S, Taniguchi H, Seino KI. Evaluation of immunosuppression protocols for MHC-matched allogeneic iPS cell-based transplantation using a mouse skin transplantation model. Inflamm Regen 2022; 42:4. [PMID: 35105370 PMCID: PMC8809003 DOI: 10.1186/s41232-021-00190-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Off-the-shelf major histocompatibility complex (MHC)-matched iPS cells (iPSC) can potentially initiate host immune responses because of the existence of numerous minor antigens. To suppress allo-immune responses, combination of immunosuppressants is usually used, but its efficacy to the allogeneic iPSC-based transplantation has not been precisely evaluated. METHODS Three transplantation models were used in this study; MHC-matched, minor antigen-mismatched mouse skin or iPSC-graft transplantation, and fully allogeneic human iPSC-derived liver organoid transplantation in immune-humanized mice. The recipients were treated with triple drugs combination (TDC; tacrolimus, methylprednisolone, and mycophenolate mofetil) or co-stimulatory molecule blockade (CB) therapy with some modifications. Graft survival as well as anti-donor T and B cell responses was analyzed. RESULTS In the mouse skin transplantation model, immunological rejection caused by the minor antigen-mismatch ranged from mild to severe according to the donor-recipient combination. The TDC treatment could apparently control the mild skin graft rejection when combined with a transient T cell depletion, but unexpected anti-donor T or B cell response was observed. On the other hand, CB therapy, particularly when combined with rapamycin treatment, was capable of attenuating both mild and severe skin graft rejection and allowing them to survive long-term without any unfavorable anti-donor immune responses. The efficacy of the CB therapy was confirmed in both mouse and human iPSC-derived graft transplantation. CONCLUSIONS The findings suggest that the CB-based treatment seems suitable to well manage the MHC-matched allogeneic iPSC-based transplantation. The TDC-based treatment may be also used to suppress the rejection, but screening of its severity prior to the transplantation seems to be needed.
Collapse
Affiliation(s)
- Tomoki Kamatani
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Ryo Otsuka
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Tomoki Murata
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Takeshi Takahashi
- Central Institute for Experimental Animals (CIEA), Kawasaki, 210-0821, Japan
| | - Akihiro Mori
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Soichiro Murata
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
- Department of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan.
| |
Collapse
|
4
|
Kawakatsu-Hatada Y, Murata S, Mori A, Kimura K, Taniguchi H. Serous Membrane Detachment with Ultrasonic Homogenizer Improves Engraftment of Fetal Liver to Liver Surface in a Rat Model of Cirrhosis. Int J Mol Sci 2021; 22:11589. [PMID: 34769019 PMCID: PMC8584093 DOI: 10.3390/ijms222111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Liver transplantation is the most effective treatment for end-stage cirrhosis. However, due to serious donor shortages, new treatments to replace liver transplantation are sorely needed. Recent studies have focused on novel therapeutic methods using hepatocytes and induced pluripotent stem cells, we try hard to develop methods for transplanting these cells to the liver surface. In the present study, we evaluated several methods for their efficiency in the detachment of serous membrane covering the liver surface for transplantation to the liver surface. The liver surface of dipeptidyl peptidase IV (DPPIV)-deficient rats in a cirrhosis model was detached by various methods, and then fetal livers from DPPIV-positive rats were transplanted. We found that the engraftment rate and area as well as the liver function were improved in rats undergoing transplantation following serous membrane detachment with an ultrasonic homogenizer, which mimics the Cavitron Ultrasonic Surgical Aspirator® (CUSA), compared with no detachment. Furthermore, the bleeding amount was lower with the ultrasonic homogenizer method than with the needle and electric scalpel methods. These findings provide evidence that transplantation to the liver surface with serous membrane detachment using CUSA might contribute to the development of new treatments for cirrhosis using cells or tissues.
Collapse
Affiliation(s)
- Yumi Kawakatsu-Hatada
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.K.-H.); (A.M.); (K.K.); (H.T.)
| | - Soichiro Murata
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.K.-H.); (A.M.); (K.K.); (H.T.)
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Akihiro Mori
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.K.-H.); (A.M.); (K.K.); (H.T.)
| | - Kodai Kimura
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.K.-H.); (A.M.); (K.K.); (H.T.)
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.K.-H.); (A.M.); (K.K.); (H.T.)
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
5
|
A Novel Orthotopic Liver Cancer Model for Creating a Human-like Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13163997. [PMID: 34439154 PMCID: PMC8394300 DOI: 10.3390/cancers13163997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma is the most common form of liver cancer. The lack of models that resemble actual tumor development in patients, limits the research to improve the diagnosis rate and develop new treatments. This study describes a novel mouse model that involves organoid formation and an implantation technique. This mouse model shares human genetic profiles and factors around the tumor, resembling the actual tumor development in patients. We demonstrate the roles of different cell types around the tumor, in promoting tumor growth, using this model. This model will be useful to understand the tumor developmental process, drug testing, diagnosis, prognosis, and treatment development. Abstract Hepatocellular carcinoma (HCC) is the most common form of liver cancer. This study aims to develop a new method to generate an HCC mouse model with a human tumor, and imitates the tumor microenvironment (TME) of clinical patients. Here, we have generated functional, three-dimensional sheet-like human HCC organoids in vitro, using luciferase-expressing Huh7 cells, human iPSC-derived endothelial cells (iPSC-EC), and human iPSC-derived mesenchymal cells (iPSC-MC). The HCC organoid, capped by ultra-purified alginate gel, was implanted into the disrupted liver using an ultrasonic homogenizer in the immune-deficient mouse, which improved the survival and engraftment rate. We successfully introduced different types of controllable TME into the model and studied the roles of TME in HCC tumor growth. The results showed the role of the iPSC-EC and iPSC-MC combination, especially the iPSC-MC, in promoting HCC growth. We also demonstrated that liver fibrosis could promote HCC tumor growth. However, it is not affected by non-alcoholic fatty liver disease. Furthermore, the implantation of HCC organoids to humanized mice demonstrated that the immune response is important in slowing down tumor growth at an early stage. In conclusion, we have created an HCC model that is useful for studying HCC development and developing new treatment options in the future.
Collapse
|
6
|
Cell Therapy and Bioengineering in Experimental Liver Regenerative Medicine: In Vivo Injury Models and Grafting Strategies. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Purpose of Review
To describe experimental liver injury models used in regenerative medicine, cell therapy strategies to repopulate damaged livers and the efficacy of liver bioengineering.
Recent Findings
Several animal models have been developed to study different liver conditions. Multiple strategies and modified protocols of cell delivery have been also reported. Furthermore, using bioengineered liver scaffolds has shown promising results that could help in generating a highly functional cell delivery system and/or a whole transplantable liver.
Summary
To optimize the most effective strategies for liver cell therapy, further studies are required to compare among the performed strategies in the literature and/or innovate a novel modifying technique to overcome the potential limitations. Coating of cells with polymers, decellularized scaffolds, or microbeads could be the most appropriate solution to improve cellular efficacy. Besides, overcoming the problems of liver bioengineering may offer a radical treatment for end-stage liver diseases.
Collapse
|
7
|
Establishment of Human Leukocyte Antigen-Mismatched Immune Responses after Transplantation of Human Liver Bud in Humanized Mouse Models. Cells 2021; 10:cells10020476. [PMID: 33672150 PMCID: PMC7927063 DOI: 10.3390/cells10020476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Humanized mouse models have contributed significantly to human immunology research. In transplant immunity, human immune cell responses to donor grafts have not been reproduced in a humanized animal model. To elicit human T-cell immune responses, we generated immune-compromised nonobese diabetic/Shi-scid, IL-2RγKO Jic (NOG) with a homozygous expression of human leukocyte antigen (HLA) class I heavy chain (NOG-HLA-A2Tg) mice. After the transplantation of HLA-A2 human hematopoietic stem cells into NOG-HLA-A2Tg, we succeeded in achieving alloimmune responses after the HLA-mismatched human-induced pluripotent stem cell (hiPSC)-derived liver-like tissue transplantation. This immune response was inhibited by administering tacrolimus. In this model, we reproduced allograft rejection after the human iPSC-derived liver-like tissue transplantation. Human tissue transplantation on the humanized mouse liver surface is a good model that can predict T-cell-mediated cellular rejection that may occur when organ transplantation is performed.
Collapse
|