1
|
Choi S, Moon T, Wang G, Yang JJ. Filament-free memristors for computing. NANO CONVERGENCE 2023; 10:58. [PMID: 38110639 PMCID: PMC10728429 DOI: 10.1186/s40580-023-00407-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Memristors have attracted increasing attention due to their tremendous potential to accelerate data-centric computing systems. The dynamic reconfiguration of memristive devices in response to external electrical stimuli can provide highly desirable novel functionalities for computing applications when compared with conventional complementary-metal-oxide-semiconductor (CMOS)-based devices. Those most intensively studied and extensively reviewed memristors in the literature so far have been filamentary type memristors, which typically exhibit a relatively large variability from device to device and from switching cycle to cycle. On the other hand, filament-free switching memristors have shown a better uniformity and attractive dynamical properties, which can enable a variety of new computing paradigms but have rarely been reviewed. In this article, a wide range of filament-free switching memristors and their corresponding computing applications are reviewed. Various junction structures, switching properties, and switching principles of filament-free memristors are surveyed and discussed. Furthermore, we introduce recent advances in different computing schemes and their demonstrations based on non-filamentary memristors. This Review aims to present valuable insights and guidelines regarding the key computational primitives and implementations enabled by these filament-free switching memristors.
Collapse
Affiliation(s)
- Sanghyeon Choi
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Taehwan Moon
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - J Joshua Yang
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
2
|
Baek JH, Kwak KJ, Kim SJ, Kim J, Kim JY, Im IH, Lee S, Kang K, Jang HW. Two-Terminal Lithium-Mediated Artificial Synapses with Enhanced Weight Modulation for Feasible Hardware Neural Networks. NANO-MICRO LETTERS 2023; 15:69. [PMID: 36943534 PMCID: PMC10030746 DOI: 10.1007/s40820-023-01035-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Recently, artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties. Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reliable synaptic characteristics by exploiting the advantage of non-distributed weight updates owing to stable ion migrations. However, the three-terminal configurations with large and complex structures impede the crossbar array implementation required for hardware neuromorphic systems. Meanwhile, achieving adequate synaptic performances through effective Li-ion intercalation in vertical two-terminal synaptic devices for array integration remains challenging. Here, two-terminal Au/LixCoO2/Pt artificial synapses are proposed with the potential for practical implementation of hardware neural networks. The Au/LixCoO2/Pt devices demonstrated extraordinary neuromorphic behaviors based on a progressive dearth of Li in LixCoO2 films. The intercalation and deintercalation of Li-ion inside the films are precisely controlled over the weight control spike, resulting in improved weight control functionality. Various types of synaptic plasticity were imitated and assessed in terms of key factors such as nonlinearity, symmetricity, and dynamic range. Notably, the LixCoO2-based neuromorphic system outperformed three-terminal synaptic transistors in simulations of convolutional neural networks and multilayer perceptrons due to the high linearity and low programming error. These impressive performances suggest the vertical two-terminal Au/LixCoO2/Pt artificial synapses as promising candidates for hardware neural networks.
Collapse
Affiliation(s)
- Ji Hyun Baek
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Ju Kwak
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Ju Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaehyun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Young Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - In Hyuk Im
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sunyoung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kisuk Kang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Korea.
| |
Collapse
|
3
|
Wang J, Zhuge X, Zhuge F. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:326-344. [PMID: 34025215 PMCID: PMC8128179 DOI: 10.1080/14686996.2021.1911277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The state-of-the-art artificial intelligence technologies mainly rely on deep learning algorithms based on conventional computers with classical von Neumann computing architectures, where the memory and processing units are separated resulting in an enormous amount of energy and time consumed in the data transfer process. Inspired by the human brain acting like an ultra-highly efficient biological computer, neuromorphic computing is proposed as a technology for hardware implementation of artificial intelligence. Artificial synapses are the main component of a neuromorphic computing architecture. Memristors are considered to be a relatively ideal candidate for artificial synapse applications due to their high scalability and low power consumption. Oxides are most widely used in memristors due to the ease of fabrication and high compatibility with complementary metal-oxide-semiconductor processes. However, oxide memristors suffer from unsatisfactory stability and reliability. Oxide-based hybrid structures can effectively improve the device stability and reliability, therefore providing a promising prospect for the application of oxide memristors to neuromorphic computing. This work reviews the recent advances in the development of hybrid oxide memristive synapses. The discussion is organized according to the blending schemes as well as the working mechanisms of hybrid oxide memristors.
Collapse
Affiliation(s)
- Jingrui Wang
- School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Xia Zhuge
- School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo, China
| | - Fei Zhuge
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- CONTACT Fei Zhuge Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo315201, China
| |
Collapse
|
4
|
Abstract
The expeditious development of information technology has led to the rise of artificial intelligence (AI). However, conventional computing systems are prone to volatility, high power consumption, and even delay between the processor and memory, which is referred to as the von Neumann bottleneck, in implementing AI. To address these issues, memristor-based neuromorphic computing systems inspired by the human brain have been proposed. A memristor can store numerous values by changing its resistance and emulate artificial synapses in brain-inspired computing. Here, we introduce six types of memristors classified according to their operation mechanisms: ionic migration, phase change, spin, ferroelectricity, intercalation, and ionic gating. We review how memristor-based neuromorphic computing can learn, infer, and even create, using various artificial neural networks. Finally, the challenges and perspectives in the competing memristor technology for neuromorphic computing systems are discussed.
Collapse
Affiliation(s)
- Seung Ju Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Bum Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|