1
|
Zhang M, Zhang X, Huang Y, Chen Z, Chen B. Comparative mitochondrial genomics of Terniopsis yongtaiensis in Malpighiales: structural, sequential, and phylogenetic perspectives. BMC Genomics 2024; 25:853. [PMID: 39267005 PMCID: PMC11391645 DOI: 10.1186/s12864-024-10765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Terniopsis yongtaiensis, a member of the Podostemaceae family, is an aquatic flowering plant displaying remarkable adaptive traits that enable survival in submerged, turbulent habitats. Despite the progressive expansion of chloroplast genomic information within this family, mitochondrial genome sequences have yet to be reported. RESULTS In current study, the mitochondrial genome of the T. yongtaiensis was characterized by a circular genome of 426,928 bp encoding 31 protein-coding genes (PCGs), 18 tRNAs, and 3 rRNA genes. Our comprehensive analysis focused on gene content, repeat sequences, RNA editing processes, intracellular gene transfer, phylogeny, and codon usage bias. Numerous repeat sequences were identified, including 130 simple sequence repeats, 22 tandem repeats, and 220 dispersed repeats. Phylogenetic analysis positioned T. yongtaiensis (Podostemaceae) within the Malpighiales order, showing a close relationship with the Calophyllaceae family, which was consistent with the APG IV classification. A comparative analysis with nine other Malpighiales species revealed both variable and conserved regions, providing insights into the genomic evolution within this order. Notably, the GC content of T. yongtaiensis was distinctively lower compared to other Malpighilales, primarily due to variations in non-coding regions and specific protein-coding genes, particularly the nad genes. Remarkably, the number of RNA editing sites was low (276), distributed unevenly across 27 PCGs. The dN/dS analysis showed only the ccmB gene of T. yongtaiensis was positively selected, which plays a crucial role in cytochrome c biosynthesis. Additionally, there were 13 gene-containing homologous regions between the mitochondrial and chloroplast genomes of T. yongtaiensis, suggesting the gene transfer events between these organellar genomes. CONCLUSIONS This study assembled and annotated the first mitochondrial genome of the Podostemaceae family. The comparison results of mitochondrial gene composition, GC content, and RNA editing sites provided novel insights into the adaptive traits and genetic reprogramming of this aquatic eudicot group and offered a foundation for future research on the genomic evolution and adaptive mechanisms of Podostemaceae and related plant families in the Malpighiales order.
Collapse
Affiliation(s)
- Miao Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xiaohui Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China
| | - Yinglin Huang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China
| | - Zhangxue Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China
| | - Binghua Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
2
|
Köhler M, Reginato M, Jin JJ, Majure LC. More than a spiny morphology: plastome variation in the prickly pear cacti (Opuntieae). ANNALS OF BOTANY 2023; 132:771-786. [PMID: 37467174 PMCID: PMC10799996 DOI: 10.1093/aob/mcad098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far. METHODS Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes. KEY RESULTS Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny. CONCLUSIONS Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further.
Collapse
Affiliation(s)
- Matias Köhler
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos, Sorocaba, SP, Brazil
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Reginato
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jian-Jun Jin
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Lucas C Majure
- University of Florida Herbarium (FLAS), Florida Museum of Natural History, Gainesville, FL, USA
| |
Collapse
|
3
|
Pahayo DG, Cadorna CAE, Quimado MO, Rey JD. The complete chloroplast genome of Calophyllum soulattri Burm. f. (Calophyllaceae). Mitochondrial DNA B Resour 2023; 8:607-611. [PMID: 37250208 PMCID: PMC10215020 DOI: 10.1080/23802359.2023.2215350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Calophyllum soulattri Burm. f. (1768) is an evergreen tree native to Southeast Asia, Australia, and the Solomon Islands. It is known for its medicinal uses and has been utilized in traditional folk medicine. However, genomic resources for this species are still unavailable. In this study, we sequenced and assembled the first complete chloroplast genome of C. soulattri using next-generation sequencing data. The chloroplast genome of C. soulattri is 161,381 bp in length with a total GC content of 36.36%. The chloroplast genome contains a large single copy (LSC) region of 88,680 bp, a small single copy (SSC) region of 17,453 bp, and two inverted repeat (IR) regions of 27,624 bp each. Furthermore, the chloroplast genome has 131 genes, which include 86 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis indicated that C. soulattri is clustered in the same branch with C. inophyllum and is closely related to Mesua ferrea.
Collapse
Affiliation(s)
- Dexter G. Pahayo
- Plant Molecular Phylogenetics Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | - Charles Anthon E. Cadorna
- Plant Molecular Phylogenetics Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | - Marilyn O. Quimado
- Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines, Los Baños, Laguna, Philippines
| | - Jessica D. Rey
- Plant Molecular Phylogenetics Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| |
Collapse
|
4
|
Senapati A, Chetri BK, Mitra S, Shelke RG, Rangan L. Decoding the complete chloroplast genome of Cissus quadrangularis: insights into molecular structure, comparative genome analysis and mining of mutational hotspot regions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:709-724. [PMID: 37363414 PMCID: PMC10284753 DOI: 10.1007/s12298-023-01312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/25/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
Cissus quadrangularis L., a member of the Vitaceae family, is an important medicinal plant with widespread application in Indian traditional medicines. C. quadrangularis L. whole chloroplast genome of 160,404 bp was assembled using a genome skimming approach from the whole genome library. The assembled chloroplast genome contained a large single-copy region (88,987 bp), a small single-copy region (18,621 bp), and pairs of inverted repeat regions (26,398 bp). It also comprised 133 genes, including 37 tRNAs, eight rRNAs, and 88 protein-coding genes. Aside from that, we annotated three genes atpH, petB, and psbL, as well as one duplicated copy of the ycf1 gene in C. quadrangularis L. that had previously been missing from the annotation of compared Cissus chloroplast genomes. Five divergent hotspot regions such as petA_psbJ (0.1237), rps16_trnQ-UUG (0.0913), psbC_trnS-UGA (0.0847), rps15_ycf1 (0.0788), and rps2_rpoC2 (0.0788) were identified in the investigation that could aid in future species discrimination. Surprisingly, we found the overlapping genes ycf1 and ndhF on the IRb/SSC junction, rarely seen in angiosperms. The results of the phylogenetic study showed that the genomes of the Cissus species under study formed a single distinct clade. The detailed annotations given in this study could be useful in the future for genome annotations of Cissus species. The current findings of the study have the potential to serve as a useful resource for future research in the field of population genetics and the evolutionary relationships in the Cissus genus. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01312-w.
Collapse
Affiliation(s)
- Alok Senapati
- Applied Biodiversity Laboratory, O Block, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Bimal K. Chetri
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Sudip Mitra
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Rahul G. Shelke
- Applied Biodiversity Laboratory, O Block, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Latha Rangan
- Applied Biodiversity Laboratory, O Block, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
5
|
Li ZZ, Lehtonen S, Chen JM. The dynamic history of plastome structure across aquatic subclass Alismatidae. BMC PLANT BIOLOGY 2023; 23:125. [PMID: 36869282 PMCID: PMC9985265 DOI: 10.1186/s12870-023-04125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The rapidly increasing availability of complete plastomes has revealed more structural complexity in this genome under different taxonomic levels than expected, and this complexity provides important evidence for understanding the evolutionary history of angiosperms. To explore the dynamic history of plastome structure across the subclass Alismatidae, we sampled and compared 38 complete plastomes, including 17 newly assembled, representing all 12 recognized families of Alismatidae. RESULT We found that plastomes size, structure, repeat elements, and gene content were highly variable across the studied species. Phylogenomic relationships among families were reconstructed and six main patterns of variation in plastome structure were revealed. Among these, the inversion from rbcL to trnV-UAC (Type I) characterized a monophyletic lineage of six families, but independently occurred also in Caldesia grandis. Three independent ndh gene loss events were uncovered across the Alismatidae. In addition, we detected a positive correlation between the number of repeat elements and the size of plastomes and IR in Alismatidae. CONCLUSION In our study, ndh complex loss and repeat elements likely contributed to the size of plastomes in Alismatidae. Also, the ndh loss was more likely related to IR boundary changes than the adaptation of aquatic habits. Based on existing divergence time estimation, the Type I inversion may have occurred during the Cretaceous-Paleogene in response to the extreme paleoclimate changes. Overall, our findings will not only allow exploring the evolutionary history of Alismatidae plastome, but also provide an opportunity to test if similar environmental adaptations result in convergent restructuring in plastomes.
Collapse
Affiliation(s)
- Zhi-Zhong Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Samuli Lehtonen
- Herbarium, Biodiversity Unit, University of Turku, Turku, 20014, Finland.
| | - Jin-Ming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
6
|
Wee CC, Nor Muhammad NA, Subbiah VK, Arita M, Nakamura Y, Goh HH. Plastomes of Garcinia mangostana L. and Comparative Analysis with Other Garcinia Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:930. [PMID: 36840278 PMCID: PMC9966718 DOI: 10.3390/plants12040930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The two varieties of mangosteen (Garcinia mangostana L.) cultivated in Malaysia are known as Manggis and Mesta. The latter is preferred for its flavor, texture, and seedlessness. Here, we report a complete plastome (156,580 bp) of the Mesta variety that was obtained through a hybrid assembly approach using PacBio and Illumina sequencing reads. It encompasses a large single-copy (LSC) region (85,383 bp) and a small single-copy (SSC) region (17,137 bp) that are separated by 27,230 bp of inverted repeat (IR) regions at both ends. The plastome comprises 128 genes, namely, 83 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The plastome of the Manggis variety (156,582 bp) obtained from reference-guided assembly of Illumina reads was found to be nearly identical to Mesta except for two indels and the presence of a single-nucleotide polymorphism (SNP). Comparative analyses with other publicly available Garcinia plastomes, including G. anomala, G. gummi-gutta, G. mangostana var. Thailand, G. oblongifolia, G. paucinervis, and G. pedunculata, found that the gene content, gene order, and gene orientation were highly conserved among the Garcinia species. Phylogenomic analysis divided the six Garcinia plastomes into three groups, with the Mesta and Manggis varieties clustered closer to G. anomala, G. gummi-gutta, and G. oblongifolia, while the Thailand variety clustered with G. pedunculata in another group. These findings serve as future references for the identification of species or varieties and facilitate phylogenomic analysis of lineages from the Garcinia genus to better understand their evolutionary history.
Collapse
Affiliation(s)
- Ching-Ching Wee
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Vijay Kumar Subbiah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Masanori Arita
- Department of Informatics, National Institute of Genetics, Mishima 411-8540, Shizuoka, Japan
| | - Yasukazu Nakamura
- Department of Informatics, National Institute of Genetics, Mishima 411-8540, Shizuoka, Japan
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
7
|
Characterization of the plastid genome of Cratoxylum species (Hypericaceae) and new insights into phylogenetic relationships. Sci Rep 2022; 12:18810. [PMID: 36335203 PMCID: PMC9637187 DOI: 10.1038/s41598-022-23639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022] Open
Abstract
To expand the genomic information of Hypericaceae, particularly on Cratoxylum, we characterized seven novel complete plastid genomes (plastomes) of five Cratoxylum and two of its allied taxa, including C. arborescens, C. formosum subsp. formosum, C. formosum subsp. pruniflorum, C. maingayi, C. sumatranum, Hypericum hookerianum, and Triadenum breviflorum. For Cratoxylum, the plastomes ranged from 156,962 to 157,792 bp in length. Genomic structure and gene contents were observed in the five plastomes, and were comprised of 128-129 genes, which includes 83-84 protein-coding (CDS), 37 tRNA, and eight rRNA genes. The plastomes of H. hookerianum and T. breviflorum were 138,260 bp and 167,693 bp, respectively. A total of 110 and 127 genes included 72 and 82 CDS, 34 and 37 tRNA, as well as four and eight rRNA genes. The reconstruction of the phylogenetic trees using maximum likelihood (ML) and Bayesian inference (BI) trees based on the concatenated CDS and internal transcribed spacer (ITS) sequences that were analyzed separately have revealed the same topology structure at genus level; Cratoxylum is monophyletic. However, C. formosum subsp. pruniflorum was not clustered together with its origin, raising doubt that it should be treated as a distinct species, C. pruniflorum based on molecular evidence that was supported by morphological descriptions.
Collapse
|
8
|
Xu YL, Shen HH, Du XY, Lu L. Plastome characteristics and species identification of Chinese medicinal wintergreens ( Gaultheria, Ericaceae). PLANT DIVERSITY 2022; 44:519-529. [PMID: 36540705 PMCID: PMC9751084 DOI: 10.1016/j.pld.2022.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 06/17/2023]
Abstract
Wintergreen oil is a folk medicine widely used in foods, pesticides, cosmetics and drugs. In China, nine out of 47 species within Gaultheria (Ericaceae) are traditionally used as Chinese medicinal wintergreens; however, phylogenetic approaches currently used to discriminating these species remain unsatisfactory. In this study, we sequenced and characterized plastomes from nine Chinese wintergreen species and identified candidate DNA barcoding regions for Gaultheria. Each Gaultheria plastome contained 110 unique genes (76 protein-coding, 30 tRNA, and four rRNA genes). Duplication of trnfM, rps14, and rpl23 genes were detected, while all plastomes lacked ycf1 and ycf2 genes. Gaultheria plastomes shared substantially contracted SSC regions that contained only the ndhF gene. Moreover, plastomes of Gaultheria leucocarpa var. yunnanensis contained an inversion in the LSC region and an IR expansion to cover the ndhF gene. Multiple rearrangement events apparently occurred between the Gaultheria plastomes and those from several previously reported families in Ericales. Our phylogenetic reconstruction using 42 plastomes revealed well-supported relationships within all nine Gaultheria species. Additionally, seven mutational hotspot regions were identified as potential DNA barcodes for Chinese medicinal wintergreens. Our study is the first to generate complete plastomes and describe the structural variations of the complicated genus Gaultheria. In addition, our findings provide important resources for identification of Chinese medicinal wintergreens.
Collapse
Affiliation(s)
- Yan-Ling Xu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China
| | - Hao-Hua Shen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China
| | - Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lu Lu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
9
|
Chen BH, Zhang M, Zhao K, Zhang XH, Ge CL. Polypleurumchinense (Podostemaceae), a new species from Fujian, China, based on morphological and genomic evidence. PHYTOKEYS 2022; 199:167-186. [PMID: 36761873 PMCID: PMC9848973 DOI: 10.3897/phytokeys.199.85679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 06/18/2023]
Abstract
We describe Polypleurumchinense, a new species of Podostemaceae from Yunxiao County, Fujian Province, China, based on morphological and molecular data and the genus Polypleurum is recorded here for the first time from China. Polypleurumchinense has a gross morphology similar to P.longistylosum, but it can be distinguished from the latter by its narrower roots, more numerous and longer leaves, shorter stigmas and more numerous ovules per locule. To distinguish the new Polypleurum species and study its phylogenetic position, its complete plastome was sequenced and characterised. The plastome is 132,110 bp in length, including a pair of inverted repeat regions (IRs) of 20,389 bp divided by the large single-copy (LSC) and small single-copy (SSC) regions of 79,022 bp and 12,310 bp, respectively. The plastome size of P.chinense is relatively smaller compared to most angiosperms due to the absence of the ycf1 and ycf2 genes in the IR regions. The phylogenetic analyses also strongly support the separation of the new species from other taxa.
Collapse
Affiliation(s)
- Bing-Hua Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
| | - Miao Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
| | - Xiao-Hui Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
| | - Chang-Li Ge
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
| |
Collapse
|
10
|
Chloroplast Genome of Lithocarpus dealbatus (Hook.f. & Thomson ex Miq.) Rehder Establishes Monophyletic Origin of the Species and Reveals Mutational Hotspots with Taxon Delimitation Potential. Life (Basel) 2022; 12:life12060828. [PMID: 35743859 PMCID: PMC9225305 DOI: 10.3390/life12060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
There is phylogenetic ambiguity in the genus Lithocarpus and subfamily Quercoideae (Family: Fagaceae). Lithocarpus dealbatus, an ecologically important tree, is the dominant species among the Quercoideae in India. Although several studies have been conducted on the species' regeneration and ecological and economic significance, limited information is available on its phylo-genomics. To resolve the phylogeny in Quercoideae, we sequenced and assembled the 161,476 bp chloroplast genome of L. dealbatus, which has a large single-copy section of 90,732 bp and a small single-copy region of 18,987 bp, separated by a pair of inverted repeat regions of 25,879 bp. The chloroplast genome contained 133 genes, of which 86 were protein-coding genes, 39 were transfer RNAs, and eight were ribosomal RNAs. Analysis of repeat elements and RNA editing sites revealed interspecific similarities within the Lithocarpus genus. DNA diversity analysis identified five highly diverged coding and noncoding hotspot regions in the four genera, which can be used as polymorphic markers for species/taxon delimitation across the four genera of Quercoideae viz., Lithocarpus, Quercus, Castanea, and Castanopsis. The chloroplast-based phylogenetic analysis among the Quercoideae established a monophyletic origin of Lithocarpus, and a closer evolutionary lineage with a few Quercus species. Besides providing insights into the chloroplast genome architecture of L. dealbatus, the study identified five mutational hotspots having high taxon-delimitation potential across four genera of Quercoideae.
Collapse
|
11
|
Wu M, Zhang K, Yang X, Qian X, Li R, Wei J. Paracladopuschiangmaiensis (Podostemaceae), a new generic record for China and its complete plastid genome. PHYTOKEYS 2022; 195:1-13. [PMID: 35800211 PMCID: PMC9046368 DOI: 10.3897/phytokeys.195.82789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/01/2022] [Indexed: 06/01/2023]
Abstract
The genus Paracladopus was established based on the type species P.chiangmaiensis in 2006. The two Paracladopus species are distributed in Thailand and Laos; however, neither of them has been documented in China to date. During our field work in 2020, we collected a river-weed in Wuzhi Mountain, Hainan Province of China. After checking the morphological characters, it was identified as P.chiangmaiensis. Then, we assembled and annotated its chloroplast genome based on the genome skimming data. The results showed that the complete chloroplast genome was 133,748 bp with 35% GC content, consisting of 76 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. A maximum-likelihood tree constructed based on the matk genes showed that WuMS109 was clustered with P.chiangmaiensis (AB537420, AB698348) without base difference and together with the remains of Paracladopus formed a sister clade to Cladopus. This is the first report of P.chiangmaiensis that represents a new generic record for China. The discovery of this river-weed could lay the foundation for investigating their biogeographical patterns and species evolution in further studies.
Collapse
Affiliation(s)
- Mingsong Wu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, Hainan, ChinaChinese Academy of Medical Sciences & Peking Union Medical CollegeHaikouChina
| | - Kai Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, ChinaHainan Normal UniversityHaikouChina
| | - Xinquan Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, Hainan, ChinaChinese Academy of Medical Sciences & Peking Union Medical CollegeHaikouChina
| | - Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, ChinaFujian Agriculture and Forestry UniversityFuzhouChina
| | - Rongtao Li
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, Hainan, ChinaChinese Academy of Medical Sciences & Peking Union Medical CollegeHaikouChina
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, Hainan, ChinaChinese Academy of Medical Sciences & Peking Union Medical CollegeHaikouChina
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, ChinaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
Zhang M, Zhang XH, Ge CL, Chen BH. Terniopsisyongtaiensis (Podostemaceae), a new species from South East China based on morphological and genomic data. PHYTOKEYS 2022; 194:105-122. [PMID: 35586323 PMCID: PMC9038898 DOI: 10.3897/phytokeys.194.83080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The new species Terniopsisyongtaiensis X.X. Su, Miao Zhang & Bing-Hua Chen, from Fujian Province, China, is described and illustrated. It is similar to T.heterostaminata from Thailand, but differs in its two fertile stamens, fewer but longer vegetative ramuli, fewer but shorter flowering ramuli, shorter pedicels, capsule-stalk and stamens. The complete chroloplast genome of the new species is 129,074 bp long and has a typical quadripartite structure, including two inverted repeat regions (IRs) of 18,504 bp in length, separated by a large single-copy (LSC) and a small single-copy (SSC) regions of 79,000 bp and 13,066 bp, respectively. The ycf1 and ycf2 genes were lost compared to most higher plants, leading to a substantial reduction in the IR. The phylogenetic analysis using both matK and nrITS revealed that T.yongtaiensis is sister to T.heterostaminata with moderate support, and formed a clade with other Terniopsis species, suggesting that the new species belongs to Tristichoideae.
Collapse
Affiliation(s)
- Miao Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
| | - Xiao-Hui Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
| | - Chang-Li Ge
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
| | - Bing-Hua Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
| |
Collapse
|
13
|
Claude SJ, Park S, Park S. Gene loss, genome rearrangement, and accelerated substitution rates in plastid genome of Hypericum ascyron (Hypericaceae). BMC PLANT BIOLOGY 2022; 22:135. [PMID: 35321651 PMCID: PMC8941745 DOI: 10.1186/s12870-022-03515-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/08/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Comparative genomic analysis exhibits dynamic evolution of plastid genome (plastome) in the clusioid clade of Malpighiales, which comprise five families, including multiple inversions and gene losses. Little is known about the plastome evolution in Hypericaceae, a large family in the clade. Only the plastome of one species, Cratoxylum cochinchinense, has been published. RESULTS We generated a complete plastome sequence for Hypericum ascyron, providing the first complete plastome from the tribe Hypericeae (Hypericaceae). The H. ascyron plastome exhibits dynamic changes in gene and intron content, structure, and sequence divergence compared to the C. cochinchinense plastome from the tribe Cratoxyleae (Hypericaceae). Transcriptome data determined the evolutionary fate of the missing plastid genes infA, rps7, rps16, rpl23, and rpl32 in H. ascyron. Putative functional transfers of infA, rps7, and rpl32 were detected to the nucleus, whereas rps16 and rpl23 were substituted by nuclear-encoded homologs. The plastid rpl32 was integrated into the nuclear-encoded SODcp gene. Our findings suggested that the transferred rpl32 had undergone subfunctionalization by duplication rather than alternative splicing. The H. ascyron plastome rearrangements involved seven inversions, at least three inverted repeat (IR) boundary shifts, which generated gene relocations and duplications. Accelerated substitution rates of plastid genes were observed in the H. ascyron plastome compared with that of C. cochinchinense plastid genes. The higher substitution rates in the accD and clpP were correlated with structural change, including a large insertion of amino acids and losses of two introns, respectively. In addition, we found evidence of positive selection of the clpP, matK, and rps3 genes in the three branches related to H. ascyron. In particular, the matK gene was repeatedly under selection within the family Hypericaceae. Selective pressure in the H. ascyron matK gene was associated with the loss of trnK-UUU and relocation into the IR region. CONCLUSIONS The Hypericum ascyron plastome sequence provides valuable information for improving the understanding of plastome evolution among the clusioid of the Malpighiales. Evidence for intracellular gene transfer from the plastid to the nucleus was detected in the nuclear transcriptome, providing insight into the evolutionary fate of plastid genes in Hypericaceae.
Collapse
Affiliation(s)
- Sivagami-Jean Claude
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| |
Collapse
|
14
|
Trad RJ, Cabral FN, Bittrich V, Silva SRD, Amaral MDCED. Calophyllaceae plastomes, their structure and insights in relationships within the clusioids. Sci Rep 2021; 11:20712. [PMID: 34671062 PMCID: PMC8528878 DOI: 10.1038/s41598-021-99178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
A complete chloroplast genome is not yet available for numerous species of plants. Among the groups that lack plastome information is the clusioid clade (Malpighiales), which includes five families: Bonnetiaceae, Calophyllaceae, Clusiaceae, Hypericaceae, and Podostemaceae. With around 2200 species, it has few published plastomes and most of them are from Podostemaceae. Here we assembled and compared six plastomes from members of the clusioids: five from Calophyllaceae (newly sequenced) and one from Clusiaceae. Putative regions for evolutionary studies were identified and the newly assembled chloroplasts were analyzed with other available chloroplasts for the group, focusing on Calophyllaceae. Our results mostly agree with recent studies which found a general conserved structure, except for the two Podostemaceae species that have a large inversion (trnK-UUU–rbcL) and lack one intron from ycf3. Within Calophyllaceae we observed a longer LSC and reduced IRs in Mahurea exstipulata, resulting in some genic rearrangement, and a short inversion (psbJ–psbE) in Kielmeyera coriacea. Phylogenetic analyses recovered the clusioids and the five families as monophyletic and revealed that conflicts in relationships reported in the literature for the group agree with nodes concentrating uninformative or conflicting gene trees. Our study brings new insights about clusioid plastome architecture and its evolution.
Collapse
Affiliation(s)
- Rafaela Jorge Trad
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), CP 6109, Campinas, SP, 13083-970, Brazil. .,Macroecology Lab @ J3-166, Institute of Biological Sciences - ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Campinas, MG, 31270-901, Brazil.
| | - Fernanda Nunes Cabral
- Departamento de Ciências e Linguagens, Instituto Federal de Minas Gerais - Campus Bambuí, Bambuí, MG, 38900-000, Brazil
| | - Volker Bittrich
- Volker Bittrich is an independent scientist, Campinas, Brazil
| | - Saura Rodrigues da Silva
- Department of Technology, UNESP - São Paulo State University, Campus Jaboticabal, Jaboticabal, SP, 14884-900, Brazil
| | | |
Collapse
|
15
|
Lee C, Choi IS, Cardoso D, de Lima HC, de Queiroz LP, Wojciechowski MF, Jansen RK, Ruhlman TA. The chicken or the egg? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:861-875. [PMID: 34021942 DOI: 10.1111/tpj.15351] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The plastid genome (plastome), while surprisingly constant in gene order and content across most photosynthetic angiosperms, exhibits variability in several unrelated lineages. During the diversification history of the legume family Fabaceae, plastomes have undergone many rearrangements, including inversions, expansion, contraction and loss of the typical inverted repeat (IR), gene loss and repeat accumulation in both shared and independent events. While legume plastomes have been the subject of study for some time, most work has focused on agricultural species in the IR-lacking clade (IRLC) and the plant model Medicago truncatula. The subfamily Papilionoideae, which contains virtually all of the agricultural legume species, also comprises most of the plastome variation detected thus far in the family. In this study three non-papilioniods were included among 34 newly sequenced legume plastomes, along with 33 publicly available sequences, to assess plastome structural evolution in the subfamily. In an effort to examine plastome variation across the subfamily, approximately 20% of the sampling represents the IRLC with the remainder selected to represent the early-branching papilionoid clades. A number of IR-related and repeat-mediated changes were identified and examined in a phylogenetic context. Recombination between direct repeats associated with ycf2 resulted in intraindividual plastome heteroplasmy. Although loss of the IR has not been reported in legumes outside of the IRLC, one genistoid taxon was found to completely lack the typical plastome IR. The role of the IR and non-IR repeats in the progression of plastome change is discussed.
Collapse
Affiliation(s)
- Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - In-Su Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA
| | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal de Bahia (UFBA), Rua Barão de Jeremoabo, s.n., Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Haroldo C de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, Rio de Janeiro, 915 22460-030, Brazil
| | - Luciano P de Queiroz
- Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, Novo Horizonte, Feira de Santana, Bahia, 44036-900, Brazil
| | | | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
16
|
Yue B, Shi J. The complete chloroplast genome sequence of Garcinia anomala (Clusiaceae) from Yunnan Province, China. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1899-1900. [PMID: 34189263 PMCID: PMC8208116 DOI: 10.1080/23802359.2021.1934175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Garcinia anomala Planch. & Triana is an evergreen tree classified to the genus Garcinia in the family Clusiaceae. Here we report and characterize the complete chloroplast genome sequence of G. anomala and its phylogenetic relationship was investigated. The chloroplast genome is 156,774 bp in length and has a typical quadripartite chromosomal structure. The genome is divided into a pair of inverted repeat regions (IR) of 27,053 bp, one small single-copy (SSC) region of 17,082 bp and a large single copy (LSC) region of 85,586 bp. The overall GC content is 36.1%. A total of 130 functional genes were annotated, including 85 protein-coding, 37 tRNA and 8 rRNA genes. The phylogenetic analysis of G. anomala fully resolved it in a clade with four Garcinia taxa within clusioid clade of the Malpighiales.
Collapse
Affiliation(s)
- Biying Yue
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jipu Shi
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
17
|
Alqahtani AA, Jansen RK. The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome. Sci Rep 2021; 11:7466. [PMID: 33811236 PMCID: PMC8018952 DOI: 10.1038/s41598-021-86820-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Gene transfers from mitochondria and plastids to the nucleus are an important process in the evolution of the eukaryotic cell. Plastid (pt) gene losses have been documented in multiple angiosperm lineages and are often associated with functional transfers to the nucleus or substitutions by duplicated nuclear genes targeted to both the plastid and mitochondrion. The plastid genome sequence of Euphorbia schimperi was assembled and three major genomic changes were detected, the complete loss of rpl32 and pseudogenization of rps16 and infA. The nuclear transcriptome of E. schimperi was sequenced to investigate the transfer/substitution of the rpl32 and rps16 genes to the nucleus. Transfer of plastid-encoded rpl32 to the nucleus was identified previously in three families of Malpighiales, Rhizophoraceae, Salicaceae and Passifloraceae. An E. schimperi transcript of pt SOD-1-RPL32 confirmed that the transfer in Euphorbiaceae is similar to other Malpighiales indicating that it occurred early in the divergence of the order. Ribosomal protein S16 (rps16) is encoded in the plastome in most angiosperms but not in Salicaceae and Passifloraceae. Substitution of the E. schimperi pt rps16 was likely due to a duplication of nuclear-encoded mitochondrial-targeted rps16 resulting in copies dually targeted to the mitochondrion and plastid. Sequences of RPS16-1 and RPS16-2 in the three families of Malpighiales (Salicaceae, Passifloraceae and Euphorbiaceae) have high sequence identity suggesting that the substitution event dates to the early divergence within Malpighiales.
Collapse
Affiliation(s)
- Aldanah A Alqahtani
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA. .,Department of Biology, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.,Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
18
|
Jin DM, Wicke S, Gan L, Yang JB, Jin JJ, Yi TS. The Loss of the Inverted Repeat in the Putranjivoid Clade of Malpighiales. FRONTIERS IN PLANT SCIENCE 2020; 11:942. [PMID: 32670335 PMCID: PMC7332575 DOI: 10.3389/fpls.2020.00942] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/10/2020] [Indexed: 05/19/2023]
Abstract
The typical plastid genome (plastome) of photosynthetic angiosperms comprises a pair of Inverted Repeat regions (IRs), which separate a Large Single Copy region (LSC) from a Small Single Copy region (SSC). The independent losses of IRs have been documented in only a few distinct plant lineages. The majority of these taxa show uncommonly high levels of plastome structural variations, while a few have otherwise conserved plastomes. For a better understanding of the function of IRs in stabilizing plastome structure, more taxa that have lost IRs need to be investigated. We analyzed the plastomes of eight species from two genera of the putranjivoid clade of Malpighiales using Illumina paired-end sequencing, the de novo assembly strategy GetOrganelle, as well as a combination of two annotation methods. We found that all eight plastomes of the putranjivoid clade have lost their IRB, representing the fifth case of IR loss within autotrophic angiosperms. Coinciding with the loss of the IR, plastomes of the putranjivoid clade have experienced significant structural variations including gene and intron losses, multiple large inversions, as well as the translocation and duplication of plastome segments. However, Balanopaceae, one of the close relatives of the putranjivoid clade, exhibit a relatively conserved plastome organization with canonical IRs. Our results corroborate earlier reports that the IR loss and additional structural reorganizations are closely linked, hinting at a shared mechanism that underpins structural disturbances.
Collapse
Affiliation(s)
- Dong-Min Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Lu Gan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jian-Jun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|