1
|
Bello-Madruga R, Torrent Burgas M. The limits of prediction: Why intrinsically disordered regions challenge our understanding of antimicrobial peptides. Comput Struct Biotechnol J 2024; 23:972-981. [PMID: 38404711 PMCID: PMC10884422 DOI: 10.1016/j.csbj.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
Antimicrobial peptides (AMPs) are molecules found in most organisms, playing a vital role in innate immune defense against pathogens. Their mechanism of action involves the disruption of bacterial cell membranes, causing leakage of cellular contents and ultimately leading to cell death. While AMPs typically lack a defined structure in solution, they often assume a defined conformation when interacting with bacterial membranes. Given this structural flexibility, we investigated whether intrinsically disordered regions (IDRs) with AMP-like properties could exhibit antimicrobial activity. We tested 14 peptides from different IDRs predicted to have antimicrobial activity and found that nearly all of them did not display the anticipated effects. These peptides failed to adopt a defined secondary structure and had compromised membrane interactions, resulting in a lack of antimicrobial activity. We hypothesize that evolutionary constraints may prevent IDRs from folding, even in membrane-like environments, limiting their antimicrobial potential. Moreover, our research reveals that current antimicrobial predictors fail to accurately capture the structural features of peptides when dealing with intrinsically unstructured sequences. Hence, the results presented here may have far-reaching implications for designing and improving antimicrobial strategies and therapies against infectious diseases.
Collapse
Affiliation(s)
- Roberto Bello-Madruga
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Lima LF, Oliveira KBSD, Osiro KO, Cunha VA, Franco OL. Application of antimicrobial peptides in the poultry industry. Vet Microbiol 2024; 298:110267. [PMID: 39383680 DOI: 10.1016/j.vetmic.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
Poultry meat production and exportation contribute significantly to the global economy. However, various infections affect poultry production and consequently affect the economy. Nowadays, antibiotics are widely used in infection treatment and prevention. Antibiotic overuse is problematic because may cause antimicrobial resistance, which can be transferred to humans directly or indirectly, affecting public health. In addition, since antibiotics for animal growth stimulation are banned, it is important to search for new molecules to overcome these difficulties. As an alternative, antimicrobial peptides (AMPs) can show immunomodulatory, antimicrobial, and growth stimulation, which makes these molecules interesting as alternatives to antibiotic use. Studying AMPs can provide new ideas for treating the most important infections that affect poultry. Besides, this can assist in reducing the resistance problem. This review aims to examine recent studies about AMPs used against pathogens that can affect the poultry industry.
Collapse
Affiliation(s)
- Letícia Ferreira Lima
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil
| | - Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil; S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande 79117-900, Brazil
| | - Karen Ofuji Osiro
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil
| | - Victor Albuquerque Cunha
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande 79117-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil; S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande 79117-900, Brazil; Programa de Pós-Graduação Em Patologia Molecular, Universidade de Brasília (UnB), Brasília 70910-900, Brazil.
| |
Collapse
|
3
|
Dhar H, Verma S, Dogra S, Katoch S, Vij R, Singh G, Sharma M. Functional attributes of bioactive peptides of bovine milk origin and application of in silico approaches for peptide prediction and functional annotations. Crit Rev Food Sci Nutr 2024; 64:9432-9454. [PMID: 37218679 DOI: 10.1080/10408398.2023.2212803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bovine milk peptides are the protein fragments with diverse bioactive properties having antioxidant, anticarcinogenic, other therapeutic and nutraceutical potentials. These peptides are formed in milk by enzymatic hydrolysis, gastrointestinal digestion and fermentation processes. They have significant health impact with high potency and low toxicity making them a suitable natural alternative for preventing and managing diseases. Antibiotic resistance has increased the quest for better peptide candidates with antimicrobial effects. This article presents a comprehensive review on well documented antimicrobial, immunological, opioid, and anti-hypertensive activities of bovine milk peptides. It also covers the usage of computational biology tools and databases for prediction and analysis of the food-derived bioactive peptides. In silico analysis of amino acid sequences of Bos taurus milk proteins have been predicted to generate peptides with dipeptidyl peptidase IV inhibitory and ACE inhibitory properties, making them favorable candidates for developing blood sugar lowering drugs and anti-hypertensives. In addition to the prediction of new bioactive peptides, application of bioinformatics tools to predict novel functions of already known peptides is also discussed. Overall, this review focuses on the reported as well as predicted biologically active peptide of casein and whey proteins of bovine milk that can be utilized to develop therapeutic agents.
Collapse
Affiliation(s)
- Hena Dhar
- Department of Microbiology, School of Biosciences, RIMT University, Mandi Gobindgarh, India
| | - Subhash Verma
- Department of Veterinary Microbiology, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Sarita Dogra
- PGIMR, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shailja Katoch
- Department of Veterinary Microbiology, Sardar Vallabh Bhai Patel University of Agriculture and Technology, Meerut, India
| | - Rishika Vij
- Department of Veterinary Physiology & Biochemistry, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Geetanjali Singh
- Department of Veterinary Physiology & Biochemistry, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Mandeep Sharma
- Department of Veterinary Microbiology, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| |
Collapse
|
4
|
de Souza CM, Silvério de Oliveira W, Fleitas Martínez O, Dos Santos Neto NA, Buccini DF, Nieto Marín V, de Faria Júnior C, Rocha Maximiano M, Soller Ramada MH, Franco OL. Evaluating virulence features of Acinetobacter baumannii resistant to polymyxin B. Lett Appl Microbiol 2024; 77:ovae061. [PMID: 38942450 DOI: 10.1093/lambio/ovae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
The increasing resistance to polymyxins in Acinetobacter baumannii has made it even more urgent to develop new treatments. Anti-virulence compounds have been researched as a new solution. Here, we evaluated the modification of virulence features of A. baumannii after acquiring resistance to polymyxin B. The results showed lineages attaining unstable resistance to polymyxin B, except for Ab7 (A. baumannii polymyxin B resistant lineage), which showed stable resistance without an associated fitness cost. Analysis of virulence by a murine sepsis model indicated diminished virulence in Ab7 (A. baumannii polymyxin B resistant lineage) compared with Ab0 (A. baumannii polymyxin B susceptible lineage). Similarly, downregulation of virulence genes was observed by qPCR at 1 and 3 h of growth. However, an increase in bauE, abaI, and pgAB expression was observed after 6 h of growth. Comparison analysis of Ab0, Ab7, and Pseudomonas aeruginosa suggested no biofilm formation by Ab7. In general, although a decrease in virulence was observed in Ab7 when compared with Ab0, some virulence feature that enables infection could be maintained. In light of this, virulence genes bauE, abaI, and pgAB showed a potential relevance in the maintenance of virulence in polymyxin B-resistant strains, making them promising anti-virulence targets.
Collapse
Affiliation(s)
- Camila Maurmann de Souza
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| | - Warley Silvério de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Osmel Fleitas Martínez
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | | | - Danieli Fernanda Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| | - Valentina Nieto Marín
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| | - Célio de Faria Júnior
- Microbiology Department, Laboratório Central de Saúde Pública LACEN, Brasília 70830-010, Brazil
| | - Mariana Rocha Maximiano
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| | - Marcelo Henrique Soller Ramada
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| |
Collapse
|
5
|
Guerra MES, Vieira B, Calazans APCT, Destro GV, Melo K, Rodrigues E, Waz NT, Girardello R, Darrieux M, Converso TR. Recent advances in the therapeutic potential of cathelicidins. Front Microbiol 2024; 15:1405760. [PMID: 38989014 PMCID: PMC11233757 DOI: 10.3389/fmicb.2024.1405760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
The alarming increase in antimicrobial resistance in the last decades has prompted the search for alternatives to control infectious diseases. Antimicrobial peptides (AMPs) represent a heterogeneous class of molecules with ample antibacterial, antiviral, and antifungal effects. They can be found in many organisms, including all classes of vertebrates, providing a valuable source of new antimicrobial agents. The unique properties of AMPs make it harder for microbes develop resistance, while their immunomodulatory properties and target diversity reinforce their translational use in multiple diseases, from autoimmune disorders to different types of cancer. The latest years have witnessed a vast number of studies evaluating the use of AMPs in therapy, with many progressing to clinical trials. The present review explores the recent developments in the medicinal properties of cathelicidins, a vast family of AMPs with potent antimicrobial and immunomodulatory effects. Cathelicidins from several organisms have been tested in disease models of viral and bacterial infections, inflammatory diseases, and tumors, with encouraging results. Combining nanomaterials with active, natural antimicrobial peptides, including LL-37 and synthetic analogs like ceragenins, leads to the creation of innovative nanoagents with significant clinical promise. However, there are still important limitations, such as the toxicity of many cathelicidins to healthy host cells and low stability in vivo. The recent advances in nanomaterials and synthetic biology may help overcome the current limitations, enabling the use of cathelicidins in future therapeutics. Furthermore, a better understanding of the mechanisms of cathelicidin action in vivo and their synergy with other host molecules will contribute to the development of safer, highly effective therapies.
Collapse
|
6
|
Duque HM, Rodrigues G, Santos LS, Franco OL. The biological role of charge distribution in linear antimicrobial peptides. Expert Opin Drug Discov 2023; 18:287-302. [PMID: 36720196 DOI: 10.1080/17460441.2023.2173736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Antimicrobial peptides (AMP) have received particular attention due to their capacity to kill bacteria. Although much is known about them, peptides are currently being further researched. A large number of AMPs have been discovered, but only a few have been approved for topical use, due to their promiscuity and other challenges, which need to be overcome. AREAS COVERED AMPs are diverse in structure. Consequently, they have varied action mechanisms when targeting microorganisms or eukaryotic cells. Herein, the authors focus on linear peptides, particularly those that are alpha-helical structured, and examine how their charge distribution and hydrophobic amino acids could modulate their biological activity. EXPERT OPINION The world currently needs urgent solutions to the infective problems caused by resistant pathogens. In order to start the race for antimicrobial development from the charge distribution viewpoint, bioinformatic tools will be necessary. Currently, there is no software available that allows to discriminate charge distribution in AMPs and predicts the biological effects of this event. Furthermore, there is no software available that predicts the side-chain length of residues and its role in biological functions. More specialized software is necessary.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil
| | - Lucas Souza Santos
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010, Campo Grande-MS, Brazil
| |
Collapse
|
7
|
Jangpromma N, Konkchaiyaphum M, Punpad A, Sosiangdi S, Daduang S, Klaynongsruang S, Tankrathok A. Rational Design of RN15m4 Cathelin Domain-Based Peptides from Siamese Crocodile Cathelicidin Improves Antimicrobial Activity. Appl Biochem Biotechnol 2023; 195:1096-1108. [PMID: 36327032 DOI: 10.1007/s12010-022-04210-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Antimicrobial peptides are becoming a new generation of antibiotics due to their therapeutic potential and ability to decrease drug-resistant bacteria development. Cathelicidins are known as effective peptides of vertebrate immunity that play crucial roles in the defensive strategy against pathogens. To improve its potency, the RN15 antibacterial peptide derived from the cathelin domain of Crocodylus siamensis cathelicidin has been modified and its antimicrobial properties investigated. Peptides were derived by template-based and physicochemical designation. The RN15 derivative peptides were predicted through their structure modeling, antimicrobial potency, and peptide-membrane calculation. The antimicrobial and cytotoxic activities of candidate peptides were investigated. Simultaneous consideration of physicochemical characteristics, secondary structure modeling, and the result of antimicrobial peptide tools prediction indicated that RN15m4 peptide was a candidate derivative antimicrobial peptide. The RN15m4 peptide expresses antimicrobial activity against most Gram-positive and Gram-negative bacteria and fungi with a lower minimum inhibition concentration (MIC) than the parent peptide. Besides, the time-killing assay shows that the designed peptide performed its ability to quickly kill bacteria better than the original peptide. Scanning electron microscopy (SEM) displayed the destruction of the bacterial cell membrane caused by the RN15m4 peptide. In addition, the RN15m4 peptide exhibits low hemolytic activity and low cytotoxic activity as good as the template peptide. The RN15m4 peptide performs a range of antimicrobial activities with low cell toxicity. Our study has illustrated the combination approach to peptide design for potent antibiotic peptide discovery.
Collapse
Affiliation(s)
- Nisachon Jangpromma
- Faculty of Science, Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, 40000, Khon Kaen, Thailand.,Faculty of Science, Department of Integrated Science, Khon Kaen University, 40000, Khon Kaen, Thailand
| | - Monruedee Konkchaiyaphum
- Faculty of Science, Department of Biochemistry, Khon Kaen University, 40000, Khon Kaen, Thailand
| | - Arpaporn Punpad
- Faculty of Agricultural Technology, Department of Biotechnology, Kalasin University, 46000, Kalasin, Thailand
| | - Sirinthip Sosiangdi
- Faculty of Science, Department of Biochemistry, Khon Kaen University, 40000, Khon Kaen, Thailand
| | - Sakda Daduang
- Faculty of Science, Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, 40000, Khon Kaen, Thailand.,Faculty of Pharmaceutical Sciences, Division of Pharmacognosy and Toxicology, Khon Kaen University, 40000, Khon Kaen, Thailand
| | - Sompong Klaynongsruang
- Faculty of Science, Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, 40000, Khon Kaen, Thailand.,Faculty of Science, Department of Biochemistry, Khon Kaen University, 40000, Khon Kaen, Thailand
| | - Anupong Tankrathok
- Faculty of Science, Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, 40000, Khon Kaen, Thailand. .,Faculty of Agricultural Technology, Department of Biotechnology, Kalasin University, 46000, Kalasin, Thailand.
| |
Collapse
|
8
|
Bermúdez-Puga S, Morán-Marcillo G, Espinosa de Los Monteros-Silva N, Naranjo RE, Toscano F, Vizuete K, Torres Arias M, Almeida JR, Proaño-Bolaños C. Inspiration from cruzioseptin-1: membranolytic analogue with improved antibacterial properties. Amino Acids 2023; 55:113-124. [PMID: 36609571 DOI: 10.1007/s00726-022-03209-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/25/2022] [Indexed: 01/09/2023]
Abstract
Peptide engineering has gained attraction as a source of new cationicity-enhanced analogues with high potential for the design of next-generation antibiotics. In this context, cruzioseptin-1 (CZS-1), a peptide identified from Cruziohyla calcarifer, is recognized for its antimicrobial potency. However, this amidated-peptide is moderately hemolytic. In order to reduce toxicity and increase antimicrobial potency, 3 peptide analogues based on cruzioseptin-1 were designed and evaluated. [K4K15]CZS-1, an analogue with increased cationicity and reduced hydrophobicity, showed antibacterial, antifungal and antiproliferative properties. In addition, [K4K15]CZS-1 is less hemolytic than CZS-1. The in silico and scanning electron microscopy analysis reveal that [K4K15]CZS-1 induces a membranolytic effect on bacteria. Overall, these results confirm the potential of CZS-1 as source of inspiration for design new selective antimicrobial analogues useful for development of new therapeutic agents.
Collapse
Affiliation(s)
- Sebastián Bermúdez-Puga
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador
| | - Giovanna Morán-Marcillo
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador
| | - Nina Espinosa de Los Monteros-Silva
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador
| | - Renato E Naranjo
- Dirección Nacional de Biodiversidad, Ministerio del Ambiente, Agua y Transición Ecológica, Madrid 1159 y Andalucía, Quito, 170525, Ecuador
| | - Fernanda Toscano
- Departamento de Ciencias de la Vida y Agricultura, Laboratorio de Inmunología y Virología, Universidad de las Fuerzas Armadas ESPE, CENCINAT, GISAH Av. Gral. Rumiñahui S/N, P.O. Box 171, -5-231B, Sangolquí, Ecuador
| | - Karla Vizuete
- Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí, 170501, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Laboratorio de Inmunología y Virología, Universidad de las Fuerzas Armadas ESPE, CENCINAT, GISAH Av. Gral. Rumiñahui S/N, P.O. Box 171, -5-231B, Sangolquí, Ecuador
| | - José R Almeida
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador
| | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador.
| |
Collapse
|
9
|
Ramalho SR, de Cássia Orlandi Sardi J, Júnior EC, Marchetto R, Wender H, Vargas LFP, de Miranda A, Almeida CV, de Oliveira Almeida LH, de Oliveira CFR, Macedo MLR. The synthetic antimicrobial peptide IKR18 displays anti-infectious properties in Galleria mellonella in vivo model. Biochim Biophys Acta Gen Subj 2022; 1866:130244. [PMID: 36162730 DOI: 10.1016/j.bbagen.2022.130244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
Abstract
Antimicrobial peptides (AMPs) are promising tools for developing new antibiotics. We described the design of IKR18, an AMP designed with the aid of computational tools. IKR18 showed antimicrobial activity against Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). CD studies revealed that IKR18 assumes an alpha-helical structure in the membrane-mimetic environment. The action mechanism IKR18 involves damage to the bacteria membrane, as demonstrated by Sytox green uptake. Furthermore, IKR18 displayed synergic and additive effects in combination with antibiotics ciprofloxacin and vancomycin. The peptide showed anti-biofilm activity in concentration and efficiency compared with commercial antibiotics, involving the direct death of bacteria, as confirmed by scanning electron microscopy. The anti-infective activity of IKR18 was demonstrated in the Galleria mellonella model infected with S. aureus, MRSA, and Acinetobacter baumannii. The novel bioinspired peptide, IKR18, proved to be effective in the control of bacterial infection, opening opportunities for the development of further assays, including preclinical models.
Collapse
Affiliation(s)
- Suellen Rodrigues Ramalho
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Janaina de Cássia Orlandi Sardi
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Edson Crusca Júnior
- Instituto de Química, Departamento de Bioquímica e Química Tecnológica, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| | - Reinaldo Marchetto
- Instituto de Química, Departamento de Bioquímica e Química Tecnológica, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| | - Heberton Wender
- Laboratório de Nanomateriais e Nanotecnologia Aplicada (LNNA), Instituto de Física, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Luiz Felipe Plaça Vargas
- Laboratório de Nanomateriais e Nanotecnologia Aplicada (LNNA), Instituto de Física, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Antonio de Miranda
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudiane Vilharroel Almeida
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Luís Henrique de Oliveira Almeida
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Maria Lígia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, FACFAN, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.
| |
Collapse
|
10
|
de Moraes LFRN, Silva PSE, Pereira TCPL, Almeida Rodrigues TA, Farias Frihling BE, da Costa RA, Torquato HFV, Lima CS, Paredes-Gamero EJ, Migliolo L. First generation of multifunctional peptides derived from latarcin-3a from Lachesana tarabaevi spider toxin. Front Microbiol 2022; 13:965621. [PMID: 36212827 PMCID: PMC9532841 DOI: 10.3389/fmicb.2022.965621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The need for discovering new compounds that can act selectively on pathogens is becoming increasingly evident, given the number of deaths worldwide due to bacterial infections or tumor cells. New multifunctional biotechnological tools are being sought, including compounds present in spider venoms, which have high biotechnological potential. The present work aims to perform the rational design and functional evaluation of synthetic peptides derived from Lachesana tarabaevi spider toxin, known as latarcin-3a. The antimicrobial activity was tested against Gram-positive and -negative bacteria, with minimum inhibitory concentrations (MIC) between 4 and 128 μg.ml−1. Anti-biofilm tests were then performed to obtain MICs, where the peptides demonstrated activity from 4 to 128 μg.ml−1. In vitro cell cytotoxicity assays were carried out from tumor cell lines, lineages C1498, Kasumi-1, K-562, Jurkat, MOLT4, and Raji. Erythrocyte integrity was evaluated in the presence of synthetic peptides analog, which did not promote hemolysis at 128 μg.ml−1. The peptide that showed the best antibacterial activity was Lt-MAP3 and the best antitumor was Lt-MAP2. In conclusion, rational design of multifunctional antimicrobial peptides may be promising alternative tools in the treatment of emerging diseases such as bacterial infections and tumor cells.
Collapse
Affiliation(s)
- Luiz Filipe Ramalho Nunes de Moraes
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Selkis Biotech, Startup, Laboratório de Artrópodes Peçonhentos, Campo Grande, MS, Brazil
| | - Patrícia Souza e Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | | | | | - Breno Emanuel Farias Frihling
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Selkis Biotech, Startup, Laboratório de Artrópodes Peçonhentos, Campo Grande, MS, Brazil
| | - Rosiane Andrade da Costa
- Programa de Pós-Graduação em Ciências Genômica e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | | | - Cauê Santos Lima
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Edgar Julian Paredes-Gamero
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Selkis Biotech, Startup, Laboratório de Artrópodes Peçonhentos, Campo Grande, MS, Brazil
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- *Correspondence: Ludovico Migliolo,
| |
Collapse
|
11
|
Otazo-Pérez A, Asensio-Calavia P, González-Acosta S, Baca-González V, López MR, Morales-delaNuez A, Pérez de la Lastra JM. Antimicrobial Activity of Cathelicidin-Derived Peptide from the Iberian Mole Talpa occidentalis. Vaccines (Basel) 2022; 10:vaccines10071105. [PMID: 35891269 PMCID: PMC9323388 DOI: 10.3390/vaccines10071105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
The immune systems of all vertebrates contain cathelicidins, a family of antimicrobial peptides. Cathelicidins are a type of innate immune effector that have a number of biological functions, including a well-known direct antibacterial action and immunomodulatory function. In search of new templates for antimicrobial peptide discovery, we have identified and characterized the cathelicidin of the small mammal Talpa occidentalis. We describe the heterogeneity of cathelicidin in the order Eulipotyphla in relation to the Iberian mole and predict its antibacterial activity using bioinformatics tools. In an effort to correlate these findings, we derived the putative active peptide and performed in vitro hemolysis and antimicrobial activity assays, confirming that Iberian mole cathelicidins are antimicrobial. Our results showed that the Iberian mole putative peptide, named To-KL37 (KLFGKVGNLLQKGWQKIKNIGRRIKDFFRNIRPMQEA) has antibacterial and antifungal activity. Understanding the antimicrobial defense of insectivores may help scientists prevent the spread of pathogens to humans. We hope that this study can also provide new, effective antibacterial peptides for future drug development.
Collapse
Affiliation(s)
- Andrea Otazo-Pérez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo. 456, 38200 San Cristóbal de La Laguna, Spain
| | - Patricia Asensio-Calavia
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo. 456, 38200 San Cristóbal de La Laguna, Spain
| | - Sergio González-Acosta
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo. 456, 38200 San Cristóbal de La Laguna, Spain
| | - Victoria Baca-González
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
| | - Manuel R. López
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
| | - Antonio Morales-delaNuez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
| | - José Manuel Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain; (A.O.-P.); (P.A.-C.); (S.G.-A.); (V.B.-G.); (M.R.L.); (A.M.-d.)
- Correspondence: ; Tel.: +34-922260112
| |
Collapse
|
12
|
Chen CH, Bepler T, Pepper K, Fu D, Lu TK. Synthetic molecular evolution of antimicrobial peptides. Curr Opin Biotechnol 2022; 75:102718. [PMID: 35395425 DOI: 10.1016/j.copbio.2022.102718] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 01/18/2023]
Abstract
As we learn more about how peptide structure and activity are related, we anticipate that antimicrobial peptides will be engineered to have strong potency and distinct functions and that synthetic peptides will have new biomedical applications, such as treatments for emerging infectious diseases. As a result of the enormous number of possible amino acid sequences and the low-throughput nature of antimicrobial peptide assays, computational tools for peptide design and optimization are needed for direct experimentation toward obtaining functional sequences. Recent developments in computational tools have improved peptide design, saving labor, reagents, costs, and time. At the same time, improvements in peptide synthesis and experimental platforms continue to reduce the cost and increase the throughput of peptide-drug screening. In this review, we discuss the current methods of peptide design and engineering, including in silico methods and peptide synthesis and screening, and highlight areas of potential improvement.
Collapse
Affiliation(s)
- Charles H Chen
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Tristan Bepler
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Karen Pepper
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Debbie Fu
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Timothy K Lu
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA; Senti Biosciences, South San Francisco, CA 94080, USA.
| |
Collapse
|
13
|
Falcigno L, D’Auria G, Palmieri G, Gogliettino M, Agrillo B, Tatè R, Dardano P, Nicolais L, Balestrieri M. Key Physicochemical Determinants in the Antimicrobial Peptide RiLK1 Promote Amphipathic Structures. Int J Mol Sci 2021; 22:10011. [PMID: 34576174 PMCID: PMC8472000 DOI: 10.3390/ijms221810011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) represent a skilled class of new antibiotics, due to their broad range of activity, rapid killing, and low bacterial resistance. Many efforts have been made to discover AMPs with improved performances, i.e., high antimicrobial activity, low cytotoxicity against human cells, stability against proteolytic degradation, and low costs of production. In the design of new AMPs, several physicochemical features, such as hydrophobicity, net positive charge, propensity to assume amphipathic conformation, and self-assembling properties, must be considered. Starting from the sequence of the dodecapeptide 1018-K6, we designed a new 10-aminoacid peptide, namely RiLK1, which is highly effective against both fungi and Gram-positive and -negative bacteria at low micromolar concentrations without causing human cell cytotoxicity. In order to find the structural reasons explaining the improved performance of RiLK1 versus 1018-K6, a comparative analysis of the two peptides was carried out with a combination of CD, NMR, and fluorescence spectroscopies, while their self-assembling properties were analyzed by optical and atomic force microscopies. Interestingly, the different spectroscopic and microscopic profiles exhibited by the two peptides, including the propensity of RiLK1 to adopt helix arrangements in contrast to 1018-K6, could explain the improved bactericidal, antifungal, and anti-biofilm activities shown by the new peptide against a panel of food pathogens.
Collapse
Affiliation(s)
- Lucia Falcigno
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.); (G.D.)
| | - Gabriella D’Auria
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.); (G.D.)
| | - Gianna Palmieri
- Institute of Biosciences and BioResources, National Research Council (IBBR-CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (B.A.); (M.B.)
| | - Marta Gogliettino
- Institute of Biosciences and BioResources, National Research Council (IBBR-CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (B.A.); (M.B.)
| | - Bruna Agrillo
- Institute of Biosciences and BioResources, National Research Council (IBBR-CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (B.A.); (M.B.)
- Materias Srl, Corso N. Protopisani 70, 80146 Naples, Italy;
- Department of Biology, University of Naples Federico II di Monte Sant’Angelo, Via Cintia 21, 80126 Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics, National Research Council (IGB-CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Principia Dardano
- Institute of Applied Sciences & Intelligent Systems, National Research Council (ISASI-CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Luigi Nicolais
- Materias Srl, Corso N. Protopisani 70, 80146 Naples, Italy;
| | - Marco Balestrieri
- Institute of Biosciences and BioResources, National Research Council (IBBR-CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (B.A.); (M.B.)
| |
Collapse
|
14
|
Genetic diversity of Japanese quail cathelicidins. Poult Sci 2021; 100:101046. [PMID: 33780752 PMCID: PMC8039728 DOI: 10.1016/j.psj.2021.101046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 12/29/2020] [Accepted: 02/04/2021] [Indexed: 11/24/2022] Open
Abstract
Japanese quail is a low-fat, meat-bird species exhibiting high disease resistance. Cathelicidins (CATHs) are host defense peptides conserved across numerous vertebrate species that play an important role in innate immunity. The activity of host defense peptides can be affected by amino acid substitutions. However, no polymorphisms in avian CATH genes have been reported to date. The aim of this study was to clarify the polymorphisms in CATHs in Japanese quail. DNA for genomic analyses was extracted from the peripheral blood of 99 randomly selected quail from 6 inbred lines. A total of 6, 4, 6, and 4 CjCATH1, -2, -3, and -B1 alleles were identified, respectively. Nine haplotypes, including 4 strain-specific haplotypes, were identified by combining alleles at the CjCATH1, -2, -3, and -B1 loci. In addition, 2 and 1 amino acid substitutions (I145F, Q148H, and P245H) predicted by PROVEAN and PolyPhen-2 to have deleterious effects were detected in CjCATH2 and -B1, respectively. Synthetic CjCATH2 and -B1 peptides exhibited greater antibacterial activity against Escherichia coli than chicken CATH2 and -B1, respectively. Furthermore, the CjCATHB1∗04 peptide exhibited less potent antimicrobial activity than other CjCATHB1 peptides examined. This is the first report of amino acid substitutions accompanied by changes in antibacterial activity in avian CATHs. These findings could be employed as indicators of improvements in innate immune response in poultry.
Collapse
|