1
|
Loitongbam A, Samal NK, Kumar NR, Kumar S, Annamalai M, Kundu A, Subramanian S, Bhattacharya R. Differential regulation of glucosinolate-myrosinase mediated defense determines host-aphid interaction in Indian mustard Brassica juncea L. Mol Biol Rep 2024; 51:1079. [PMID: 39432209 DOI: 10.1007/s11033-024-10002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND India's oilseed economy falls short of self-sufficiency and is supplemented by huge imports every year. Increasing national productivity of the major oilseeds is confronted with yield losses due to diverse biotic and abiotic stresses. The productivity of Indian mustard (Brassica juncea Linnaeus), belonging to the family Brassicaceae, is significantly reduced due to damage caused by mustard aphids (Lipaphis erysimi Kaltenbach, Hemiptera: Aphididae). Rapid colonization by the nymphs makes it difficult to protect the crop through agrochemicals. Aphids release effector molecules to modulate the host-defence responses. Glucosinolates (GSLs) extensively found in Brassicaceae family, are hydrolysed by myrosinase into toxic compounds that deter herbivore insects. METHODS Here, we investigated the differential activation of the glucosinolate-myrosinase pathway in mustard manifesting susceptibility and resistance to different aphid species. Mustard plants were challenged by two different aphid species mustard aphid and cowpea aphid (Aphis craccivora Koch, Hemiptera: Aphididae) leading to complete host-susceptibility in one case and resistance in the other, respectively. Differential regulation of the GSL biosynthetic pathway and myrosinase activity was assessed by gene expression study and ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC- QToF-ESL-MS). RESULTS Gene expression study identified selective transcriptional attenuation of the key GSL biosynthetic and myrosinase gene in mustard when challenged with mustard aphid. In contrary, the activation of GSL biosynthetic genes in conjunction with myrosinase at the transcriptional level was profound in mustard, when challenged with cowpea aphid. UPLC-MS analysis showed higher turnover in the hydrolysis of glucosinolates by myrosinase which led to concomitant generation of glucose as byproduct in response to cowpea aphid in mustard plants. CONCLUSION GSL-myrosinase pathway is specifically attenuated by the successful aphid species in mustard and thus plays a pivotal role in determining the outcome of the B. juncea-aphid interaction. The results open up a new genetic modification strategy for developing resistance against aphids.
Collapse
Affiliation(s)
- Ashakiran Loitongbam
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Naresh Kumar Samal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nikhil Ram Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Satish Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | | | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sabtharishi Subramanian
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | |
Collapse
|
2
|
Ali J, Tonğa A, Islam T, Mir S, Mukarram M, Konôpková AS, Chen R. Defense strategies and associated phytohormonal regulation in Brassica plants in response to chewing and sap-sucking insects. FRONTIERS IN PLANT SCIENCE 2024; 15:1376917. [PMID: 38645389 PMCID: PMC11026728 DOI: 10.3389/fpls.2024.1376917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Abstract
Plants have evolved distinct defense strategies in response to a diverse range of chewing and sucking insect herbivory. While chewing insect herbivores, exemplified by caterpillars and beetles, cause visible tissue damage and induce jasmonic acid (JA)-mediated defense responses, sucking insects, such as aphids and whiteflies, delicately tap into the phloem sap and elicit salicylic acid (SA)-mediated defense responses. This review aims to highlight the specificity of defense strategies in Brassica plants and associated underlying molecular mechanisms when challenged by herbivorous insects from different feeding guilds (i.e., chewing and sucking insects). To establish such an understanding in Brassica plants, the typical defense responses were categorized into physical, chemical, and metabolic adjustments. Further, the impact of contrasting feeding patterns on Brassica is discussed in context to unique biochemical and molecular modus operandi that governs the resistance against chewing and sucking insect pests. Grasping these interactions is crucial to developing innovative and targeted pest management approaches to ensure ecosystem sustainability and Brassica productivity.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, China
- School of Life Sciences, Keele University, Newcastle-Under-Lyme, United Kingdom
| | - Adil Tonğa
- Entomology Department, Diyarbakır Plant Protection Research Institute, Diyarbakir, Türkiye
| | - Tarikul Islam
- Department of Entomology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Entomology, Rutgers University, New Brunswick, NJ, United States
| | - Sajad Mir
- Entomology Section, Sher-E-Kashmir University of Agricultural Science and Technology, Kashmir, India
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Dong W, Sun L, Jiao B, Zhao P, Ma C, Gao J, Zhou S. Evaluation of aphid resistance on different rose cultivars and transcriptome analysis in response to aphid infestation. BMC Genomics 2024; 25:232. [PMID: 38438880 PMCID: PMC10910744 DOI: 10.1186/s12864-024-10100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The rose is one of the most important ornamental flowers in the world for its aesthetic beauty but can be attacked by many pests such as aphids. Aphid infestation causes tremendous damage on plant tissues leading to harmed petals and leaves. Rose cultivars express different levels of resistance to aphid infestation yet the information remains unclear. Not only that, studies about the transcriptional analysis on defending mechanisms against aphids in rose are limited so far. RESULTS In this study, the aphid resistance of 20 rose cultivars was evaluated, and they could be sorted into six levels based on the number ratio of aphids. And then, a transcriptome analysis was conducted after aphid infestation in one high resistance (R, Harmonie) and one highly susceptibility (S, Carefree Wonder) rose cultivar. In open environment the majority of rose cultivars had the highest aphid number at May 6th or May 15th in 2020 and the resistance to infestation could be classified into six levels. Differential expression analysis revealed that there were 1,626 upregulated and 767 downregulated genes in the R cultivar and 481 upregulated and 63 downregulated genes in the S cultivar after aphid infestation. Pathway enrichment analysis of the differentially expressed genes revealed that upregulated genes in R and S cultivars were both enriched in defense response, biosynthesis of secondary metabolites (phenylpropanoid, alkaloid, and flavonoid), carbohydrate metabolism (galactose, starch, and sucrose metabolism) and lipid processing (alpha-linolenic acid and linolenic acid metabolism) pathways. In the jasmonic acid metabolic pathway, linoleate 13S-lipoxygenase was specifically upregulated in the R cultivar, while genes encoding other crucial enzymes, allene oxide synthase, allene oxide cyclase, and 12-oxophytodienoate reductase were upregulated in both cultivars. Transcription factor analysis and transcription factor binding search showed that WRKY transcription factors play a pivotal role during aphid infestation in the R cultivar. CONCLUSIONS Our study indicated the potential roles of jasmonic acid metabolism and WRKY transcription factors during aphid resistance in rose, providing clues for future research.
Collapse
Affiliation(s)
- Wenqi Dong
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lei Sun
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Bo Jiao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Pu Zhao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Chunhong Ma
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Junping Gao
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuo Zhou
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China.
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Verma S, Dubey N, Singh KH, Parmar N, Singh L, Sharma D, Rana D, Thakur K, Vaidya D, Thakur AK. Utilization of crop wild relatives for biotic and abiotic stress management in Indian mustard [ Brassica juncea (L.) Czern. & Coss.]. FRONTIERS IN PLANT SCIENCE 2023; 14:1277922. [PMID: 37954999 PMCID: PMC10634535 DOI: 10.3389/fpls.2023.1277922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Brassica juncea (L.) Czern. & Coss. (Indian mustard) is an economically important edible oil crop. Over the years, plant breeders have developed many elite varieties of B. juncea with better yield traits, but research work on the introgression of stress resilience traits has largely been lagging due to scarcity of resistant donors. Crop wild relatives (CWRs) are the weedy relatives of domesticated plant species which are left unutilized in their natural habitat due to the presence of certain undesirable alleles which hamper their yield potential, and thus, their further domestication. CWRs of B. juncea namely include Sinapis alba L. (White mustard), B. tournefortii Gouan. (African mustard), B. fruticulosa Cirillo (Twiggy turnip), Camelina sativa L. (Gold-of-pleasure), Diplotaxis tenuisiliqua Delile (Wall rocket), D. erucoides L. (White wall rocket), D. muralis L. (Annual wall rocket), Crambe abyssinica R.E.Fr. (Abyssinian mustard), Erucastrum gallicum Willd. (Common dogmustard), E. cardaminoides Webb ex Christ (Dogmustard), Capsella bursa-pastoris L. (Shepherds purse), Lepidium sativum L. (Garden Cress) etc. These CWRs have withstood several regimes of biotic and abiotic stresses over the past thousands of years which led them to accumulate many useful alleles contributing in resistance against various environmental stresses. Thus, CWRs could serve as resourceful gene pools for introgression of stress resilience traits into Indian mustard. This review summarizes research work on the introgression of resistance against Sclerotinia stem rot (caused by Sclerotinia sclerotiorum), Alternaria blight (caused by Alternaria brassicae), white rust (caused by Albugo candida), aphid attack, drought and high temperature from CWRs into B. juncea. However, various pre- and post-fertilization barriers due to different ploidy levels are major stumbling blocks in the success of such programmes, therefore, we also insightfully discuss how the advances made in -omics technology could be helpful in assisting various breeding programmes aiming at improvisation of stress resilience traits in B. juncea.
Collapse
Affiliation(s)
- Swati Verma
- College of Horticulture and Forestry Thunag, Dr. Yashwant Singh Parmar University of Horticulture and Forestry Nauni, Solan, HP, India
| | - Namo Dubey
- School of Biochemistry, Devi Ahilya University, Indore, MP, India
| | - K. H. Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Nehanjali Parmar
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Lal Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Dipika Sharma
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Dipika Rana
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP, India
| | - Kalpana Thakur
- College of Horticulture and Forestry Thunag, Dr. Yashwant Singh Parmar University of Horticulture and Forestry Nauni, Solan, HP, India
| | - Devina Vaidya
- Regional Horticultural Research and Training Station Bajaura, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, HP, India
| | - Ajay Kumar Thakur
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| |
Collapse
|
5
|
Jaskulak M, Rostami S, Zorena K, Vandenbulcke F. Transcriptome sequencing of Brassica napus highlights the complex issues with soil supplementation with sewage sludge. CHEMOSPHERE 2022; 298:134321. [PMID: 35306057 DOI: 10.1016/j.chemosphere.2022.134321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The soil supplementation with sewage sludge (SS) has become a widespread method to improve soil quality, but its long-term possible consequences are still relatively unknown. SS may contain several groups of contaminants to which the biological responses of the organisms are still poorly understood mainly due to the mixture toxicity. In this context, RNA-seq has been used to assess the impact of the exposure to sewage sludge supplemented soil at the whole-transcriptome level in the Brassica napus (B. napus). Although the municipal sewage sludge passed all safety regulations set by the EU commission (86/278/EEC), soil supplementation with SS caused a significant (p < 0.05) increase in the content of lead (by 68.8%, 71.4% in plant shoots and roots, respectively), zinc (by 22.4% and 31.2%), nickel (by 67.0% and 30.2%), and copper (by 33.1% and 39.2%). The de-novo assembled transcriptome of B. napus identified 555 differently expressed genes (DEGs) in a response to sewage sludge supplementation at the false detection rate below 0.001 (FDR <0.001). Among them, 313 genes were up-regulated and 242 genes were down-regulated. The gene ontology analysis (GO) had shown, that significantly enriched GO groups included genes involved in photosynthesis, carbohydrate metabolism and photosystems repair (41 genes), response to oxidative stress (50 genes), response to pathogens (36 genes), response to xenobiotics (15 genes), and heavy metals (41 genes), cell death (8 genes), cell wall structure (15 genes). These results suggest a significant impact of contaminants in sewage sludge on plants transcriptome. The transcriptomic approach facilitated a better understanding of the molecular level of the potential toxicity of sewage sludge in B. napus. RNA-seq allowed for the identification of potential novel early-warning molecular markers of environmental contamination. This work highlights the crucial necessity for rapid legislation change concerning the allowable levels of contaminants in sewage sludge applied on land, to mitigate the possible adverse outcomes in the ecosystem after its use as a fertilizer.
Collapse
Affiliation(s)
- Marta Jaskulak
- University of Lille, IMT Lille Douai, University of Artois, Yncrea Hauts-de-France, ULR4515, LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France; Department of Immunobiology and Environmental Microbiology, Medical University of Gdańsk, Poland; Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland.
| | - Saeid Rostami
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katarzyna Zorena
- Department of Immunobiology and Environmental Microbiology, Medical University of Gdańsk, Poland
| | - Franck Vandenbulcke
- University of Lille, IMT Lille Douai, University of Artois, Yncrea Hauts-de-France, ULR4515, LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| |
Collapse
|
6
|
Using genome and transcriptome analysis to elucidate biosynthetic pathways. Curr Opin Biotechnol 2022; 75:102708. [DOI: 10.1016/j.copbio.2022.102708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 12/21/2022]
|
7
|
Roohigohar S, Clarke AR, Prentis PJ. Gene selection for studying frugivore-plant interactions: a review and an example using Queensland fruit fly in tomato. PeerJ 2021; 9:e11762. [PMID: 34434644 PMCID: PMC8359797 DOI: 10.7717/peerj.11762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Fruit production is negatively affected by a wide range of frugivorous insects, among them tephritid fruit flies are one of the most important. As a replacement for pesticide-based controls, enhancing natural fruit resistance through biotechnology approaches is a poorly researched but promising alternative. The use of quantitative reverse transcription PCR (RT-qPCR) is an approach to studying gene expression which has been widely used in studying plant resistance to pathogens and non-frugivorous insect herbivores, and offers a starting point for fruit fly studies. In this paper, we develop a gene selection pipe-line for known induced-defense genes in tomato fruit, Solanum lycopersicum, and putative detoxification genes in Queensland fruit fly, Bactrocera tryoni, as a basis for future RT-qPCR research. The pipeline started with a literature review on plant/herbivore and plant/pathogen molecular interactions. With respect to the fly, this was then followed by the identification of gene families known to be associated with insect resistance to toxins, and then individual genes through reference to annotated B. tryoni transcriptomes and gene identity matching with related species. In contrast for tomato, a much better studied species, individual defense genes could be identified directly through literature research. For B. tryoni, gene selection was then further refined through gene expression studies. Ultimately 28 putative detoxification genes from cytochrome P450 (P450), carboxylesterase (CarE), glutathione S-transferases (GST), and ATP binding cassette transporters (ABC) gene families were identified for B. tryoni, and 15 induced defense genes from receptor-like kinase (RLK), D-mannose/L-galactose, mitogen-activated protein kinase (MAPK), lipoxygenase (LOX), gamma-aminobutyric acid (GABA) pathways and polyphenol oxidase (PPO), proteinase inhibitors (PI) and resistance (R) gene families were identified from tomato fruit. The developed gene selection process for B. tryoni can be applied to other herbivorous and frugivorous insect pests so long as the minimum necessary genomic information, an annotated transcriptome, is available.
Collapse
Affiliation(s)
- Shirin Roohigohar
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Anthony R Clarke
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Di Lelio I, Coppola M, Comite E, Molisso D, Lorito M, Woo SL, Pennacchio F, Rao R, Digilio MC. Temperature Differentially Influences the Capacity of Trichoderma Species to Induce Plant Defense Responses in Tomato Against Insect Pests. FRONTIERS IN PLANT SCIENCE 2021; 12:678830. [PMID: 34177994 PMCID: PMC8221184 DOI: 10.3389/fpls.2021.678830] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/14/2021] [Indexed: 05/31/2023]
Abstract
Species of the ecological opportunistic, avirulent fungus, Trichoderma are widely used in agriculture for their ability to protect crops from the attack of pathogenic fungi and for plant growth promotion activity. Recently, it has been shown that they may also have complementary properties that enhance plant defense barriers against insects. However, the use of these fungi is somewhat undermined by their variable level of biocontrol activity, which is influenced by environmental conditions. Understanding the source of this variability is essential for its profitable and wide use in plant protection. Here, we focus on the impact of temperature on Trichoderma afroharzianum T22, Trichoderma atroviride P1, and the defense response induced in tomato by insects. The in vitro development of these two strains was differentially influenced by temperature, and the observed pattern was consistent with temperature-dependent levels of resistance induced by them in tomato plants against the aphid, Macrosiphum euphorbiae, and the noctuid moth, Spodoptera littoralis. Tomato plants treated with T. afroharzianum T22 exhibited enhanced resistance toward both insect pests at 25°C, while T. atroviride P1 proved to be more effective at 20°C. The comparison of plant transcriptomic profiles generated by the two Trichoderma species allowed the identification of specific defense genes involved in the observed response, and a selected group was used to assess, by real-time quantitative reverse transcription PCR (qRT-PCR), the differential gene expression in Trichoderma-treated tomato plants subjected to the two temperature regimens that significantly affected fungal biological performance. These results will help pave the way toward a rational selection of the most suitable Trichoderma isolates for field applications, in order to best face the challenges imposed by local environmental conditions and by extreme climatic shifts due to global warming.
Collapse
Affiliation(s)
- Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Ernesto Comite
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| | - Sheridan Lois Woo
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| | - Maria Cristina Digilio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Pingault L, Palmer NA, Koch KG, Heng-Moss T, Bradshaw JD, Seravalli J, Twigg P, Louis J, Sarath G. Differential Defense Responses of Upland and Lowland Switchgrass Cultivars to a Cereal Aphid Pest. Int J Mol Sci 2020; 21:ijms21217966. [PMID: 33120946 PMCID: PMC7672581 DOI: 10.3390/ijms21217966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/01/2023] Open
Abstract
Yellow sugarcane aphid (YSA) (Sipha flava, Forbes) is a damaging pest on many grasses. Switchgrass (Panicum virgatum L.), a perennial C4 grass, has been selected as a bioenergy feedstock because of its perceived resilience to abiotic and biotic stresses. Aphid infestation on switchgrass has the potential to reduce the yields and biomass quantity. Here, the global defense response of switchgrass cultivars Summer and Kanlow to YSA feeding was analyzed by RNA-seq and metabolite analysis at 5, 10, and 15 days after infestation. Genes upregulated by infestation were more common in both cultivars compared to downregulated genes. In total, a higher number of differentially expressed genes (DEGs) were found in the YSA susceptible cultivar (Summer), and fewer DEGs were observed in the YSA resistant cultivar (Kanlow). Interestingly, no downregulated genes were found in common between each time point or between the two switchgrass cultivars. Gene co-expression analysis revealed upregulated genes in Kanlow were associated with functions such as flavonoid, oxidation-response to chemical, or wax composition. Downregulated genes for the cultivar Summer were found in co-expression modules with gene functions related to plant defense mechanisms or cell wall composition. Global analysis of defense networks of the two cultivars uncovered differential mechanisms associated with resistance or susceptibility of switchgrass in response to YSA infestation. Several gene co-expression modules and transcription factors correlated with these differential defense responses. Overall, the YSA-resistant Kanlow plants have an enhanced defense even under aphid uninfested conditions.
Collapse
Affiliation(s)
- Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
| | - Kyle G. Koch
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Jeffrey D. Bradshaw
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Javier Seravalli
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Paul Twigg
- Biology Department, University of Nebraska-Kearney, Kearney, NE 68849, USA;
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| | - Gautam Sarath
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| |
Collapse
|