1
|
Sumithra TG, Sharma SRK, Suresh G, Suja G, Prasad V, Gop AP, Patil PK, Gopalakrishnan A. Gut microbes of a high-value marine fish, Snubnose Pompano (Trachinotus blochii) are resilient to therapeutic dosing of oxytetracycline. Sci Rep 2024; 14:27949. [PMID: 39543167 PMCID: PMC11564560 DOI: 10.1038/s41598-024-75319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
Trachinotus blochii is a high-value tropical mariculture species. The present study evaluated the gut microbial impact of therapeutic exposure (80 mg/day/kg biomass for 10 days) to oxytetracycline, the most common aquaculture antibiotic in T. blochii. The cultivable counts, α-diversity measures of taxonomic and functional metagenomics, microbial dysbiosis (MD) index, and microbial taxon abundances showed the resilience of gut microbiota at 16-26 days of treatment. A significant reduction in bacterial abundance, diversity measures, Firmicutes and Actinobacteria and an increase in γ-Proteobacteria was recorded on the 6th and 11th day of treatment. The increased metagenomic stress signatures, decreased beneficial bacterial abundances, decreased abundance of microbial pathways on energy metabolism, and MD index indicated short-term transient stress during the initial days of therapeutic withdrawal, warranting health management measures. Therapeutic exposure reduced the abundance of fish pathogens, including Vibrio spp., kanamycin and ampicillin-resistant bacteria. Strikingly, oxytetracycline treatment did not increase tetracycline-resistant bacterial counts and the predicted abundance of tetracycline resistance encoding genes in the gut, illustrating that therapeutic application would not pose a risk in the context of antimicrobial resistance in short term. Altogether, the present study provides a foundation for oxytetracycline treatment to develop suitable risk minimization tactics in sustainable aquaculture.
Collapse
Affiliation(s)
- T G Sumithra
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - S R Krupesha Sharma
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
| | - Gayathri Suresh
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
- Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - G Suja
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Vishnu Prasad
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Ambarish P Gop
- Vizhinjam Regional Centre of ICAR-CMFRI, Vizhinjam P.O., Thiruvananthapuram, Kerala, 695521, India
| | - Prasanna Kumar Patil
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, MRC Nagar, Chennai, Tamil Nadu, 600028, India
| | - A Gopalakrishnan
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
2
|
Aly SM, Elatta MA, ElBanna NI, El-Shiekh MA, Mabrok M, Kelany MS, Fathi M. Comprehensive analysis of Vibrio alginolyticus: Environmental risk factors in the cultured Gilthead seabream (Sparus aurata) under seasonal fluctuations and water parameter alterations. JOURNAL OF FISH DISEASES 2023; 46:1425-1437. [PMID: 37705253 DOI: 10.1111/jfd.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
This study aimed to investigate the relationship between seasonal variations, water parameters and the prevalence of Vibriosis in Gilthead seabream. A total of 160 Gilthead seabream fish were sampled over the course of 1 year from private earthen pond farms in the Suez Canal area and examined for abnormalities and internal lesions. Vibrio alginolyticus, the causative agent of Vibriosis, was isolated and characterized from the sampled Gilthead seabream fish. The study revealed a significant correlation between different seasons and the prevalence of V. alginolyticus, with lower occurrence during autumn. Analysis of water parameters showed that toxic ammonia concentration was not effective in distinguishing between positive and negative cases of V. alginolyticus. Dissolved oxygen showed weak predictive ability for the occurrence of V. alginolyticus, while temperature demonstrated moderate potential as a predictor of its prevalence. pH values, organic matter concentrations and salinity showed no significant association with the occurrence of V. alginolyticus. Experimental challenges highlighted the vulnerability of Gilthead seabream to V. alginolyticus and emphasized the impact of environmental factors, such as pH and toxic ammonia, on their mortality and survival. The study emphasizes the importance of considering seasonal changes and water quality parameters in managing V. alginolyticus in mariculture. It underscores the need for careful monitoring and control of environmental factors to ensure the health and well-being of cultured fish populations. The findings contribute to our understanding of Vibriosis management and provide valuable insights for developing effective strategies in the aquaculture industry.
Collapse
Affiliation(s)
- Salah M Aly
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed A Elatta
- Department of Fish Health, Central Laboratory for Aquaculture Research, Sharkia, Egypt
| | - Noha I ElBanna
- Department of Aquaculture Diseases Control, Fish Farming and Technology Institute, Ismailia, Egypt
| | | | - Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mahmoud S Kelany
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Mohamed Fathi
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
3
|
Rigas D, Grivas N, Nelli A, Gouva E, Skoufos I, Kormas K, Tzora A, Lagkouvardos I. Persistent Dysbiosis, Parasite Rise and Growth Impairment in Aquacultured European Seabass after Oxytetracycline Treatment. Microorganisms 2023; 11:2302. [PMID: 37764146 PMCID: PMC10534334 DOI: 10.3390/microorganisms11092302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The use of antibiotics in open-water aquaculture is often unavoidable when faced with pathogens with high mortality rates. In addition, seasonal pathogen surges have become more common and more intense over the years. Apart from the apparent cost of antibiotic treatment, it has been observed that, in aquaculture practice, the surviving fish often display measurable growth impairment. To understand the role of gut microbiota on the observed growth impairment, in this study, we follow the incidence of Photobacterium damselae subsp. piscicida in a seabass commercial open-water aquaculture setting in Galaxidi (Greece). Fish around 10 months of age were fed with feed containing oxytetracycline (120 mg/kg/day) for twelve days, followed by a twelve-day withdrawal period, and another eighteen days of treatment. The fish were sampled 19 days before the start of the first treatment and one month after the end of the second treatment cycle. Sequencing of the 16S rRNA gene was used to measure changes in the gut microbiome. Overall, the gut microbiota community, even a month after treatment, was highly dysbiotic and characterized by very low alpha diversity. High abundances of alkalophilic bacteria in the post-antibiotic-treated fish indicated a rise in pH that was coupled with a significant increase in gut parasites. This study's results indicate that oxytetracycline (OTC) treatment causes persistent dysbiosis even one month after withdrawal and provides a more suitable environment for an increase in parasites. These findings highlight the need for interventions to restore a healthy and protective gut microbiome.
Collapse
Affiliation(s)
- Dimitris Rigas
- Galaxidi Marine Farm S.A., 33200 Galaxidi, Greece; (D.R.); (N.G.)
| | - Nikos Grivas
- Galaxidi Marine Farm S.A., 33200 Galaxidi, Greece; (D.R.); (N.G.)
| | - Aikaterini Nelli
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Evangelia Gouva
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38446 Volos, Greece;
- Agricultural Development Institute, University Research and Innovation Centre “IASON”, Argonafton & Filellinon, 38221 Volos, Greece
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Ilias Lagkouvardos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
- Department of Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, 71500 Heraklion, Greece
| |
Collapse
|
4
|
Paralika V, Kokou F, Karapanagiotis S, Makridis P. Characterization of Host-Associated Microbiota and Isolation of Antagonistic Bacteria from Greater Amberjack ( Seriola dumerili, Risso, 1810) Larvae. Microorganisms 2023; 11:1889. [PMID: 37630449 PMCID: PMC10456766 DOI: 10.3390/microorganisms11081889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Greater amberjack (Seriola dumerili) is a new species in marine aquaculture with high mortalities at the larval stages. The microbiota of amberjack larvae was analyzed using 16S rDNA sequencing in two groups, one added copepod nauplii (Acartia tonsa) in the diet, and one without copepods (control). In addition, antagonistic bacteria were isolated from amberjack larvae and live food cultures. Proteobacteria was the most abundant phylum followed by Bacteroidota in amberjack larvae. The composition and diversity of the microbiota were influenced by age, but not by diet. Microbial community richness and diversity significantly increased over time. Rhodobacteraceae was the most dominant family followed by Vibrionaceae, which showed the highest relative abundance in larvae from the control group 31 days after hatching. Alcaligenes and Thalassobius genera exhibited a significantly higher relative abundance in the copepod group. Sixty-two antagonistic bacterial strains were isolated and screened for their ability to inhibit four fish pathogens (Aeromonas veronii, Vibrio harveyi, V. anguillarum, V. alginolyticus) using a double-layer test. Phaeobacter gallaeciensis, Phaeobacter sp., Ruegeria sp., and Rhodobacter sp. isolated from larvae and Artemia sp. inhibited the fish pathogens. These antagonistic bacteria could be used as host-derived probiotics to improve the growth and survival of the greater amberjack larvae.
Collapse
Affiliation(s)
| | - Fotini Kokou
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands;
| | | | - Pavlos Makridis
- Department of Biology, University of Patras, 26504 Rio, Greece;
| |
Collapse
|
5
|
Chouayekh H, Farhat-Khemakhem A, Karray F, Boubaker I, Mhiri N, Abdallah MB, Alghamdi OA, Guerbej H. Effects of Dietary Supplementation with Bacillus amyloliquefaciens US573 on Intestinal Morphology and Gut Microbiota of European Sea Bass. Probiotics Antimicrob Proteins 2023; 15:30-43. [PMID: 35933471 DOI: 10.1007/s12602-022-09974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 01/18/2023]
Abstract
Probiotics or direct-fed microbials (DFM) have proven strong potential for improving aquaculture sustainability. This study aims to evaluate the effects of dietary supplementation with the DFM Bacillus amyloliquefaciens US573 on growth performance, intestinal morphology, and gut microbiota (GM) of European sea bass. For this purpose, healthy fish were divided into two feeding trials in triplicate of 25 fish in each tank. The fish were fed with a control basal diet or a DFM-supplemented diet for 42 days. Results showed that, while no significant effects on growth performance were observed, the length and abundance of villi were higher in the DFM-fed group. The benefic effects of DFM supplementation included also the absence of cysts formation and the increase in number of goblet cells playing essential role in immune response. Through DNA metabarcoding analysis of GM, 5 phyla and 14 major genera were identified. At day 42, the main microbiome changes in response to B. amyloliquefaciens US573 addition included the significant decrease in abundance of Actinobacteria phylum that perfectly correlates with a decrease in Nocardia genus representatives which represent serious threat in marine and freshwater fish. On the contrary, an obvious dominance of Betaproteobacteria associated with the abundance in Variovorax genus members, known for their ability to metabolize numerous substrates, was recorded. Interestingly, Firmicutes, particularly species affiliated to the genus Sporosarcina with recent promising probiotic potential, were identified as the most abundant. These results suggest that B. amyloliquefaciens US573 can be effectively recommended as health-promoting DFM in European sea bass farming.
Collapse
Affiliation(s)
- Hichem Chouayekh
- Department of Biological Sciences, College of Science, University of Jeddah, Asfan Road, 21959, P.O. Box 34, Jeddah, Kingdom of Saudi Arabia. .,Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia.
| | - Ameny Farhat-Khemakhem
- Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Insaf Boubaker
- Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Najla Mhiri
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Othman A Alghamdi
- Department of Biological Sciences, College of Science, University of Jeddah, Asfan Road, 21959, P.O. Box 34, Jeddah, Kingdom of Saudi Arabia
| | - Hamadi Guerbej
- National Institute of Sea Sciences and Technologies, Monastir, Tunisia
| |
Collapse
|
6
|
Okoye CO, Nyaruaba R, Ita RE, Okon SU, Addey CI, Ebido CC, Opabunmi AO, Okeke ES, Chukwudozie KI. Antibiotic resistance in the aquatic environment: Analytical techniques and interactive impact of emerging contaminants. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103995. [PMID: 36210048 DOI: 10.1016/j.etap.2022.103995] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic pollution is becoming an increasingly severe threat globally. Antibiotics have emerged as a new class of environmental pollutants due to their expanding usage and indiscriminate application in animal husbandry as growth boosters. Contamination of aquatic ecosystems by antibiotics can have a variety of negative impacts on the microbial flora of these water bodies, as well as lead to the development and spread of antibiotic-resistant genes. Various strategies for removing antibiotics from aqueous systems and environments have been developed. Many of these approaches, however, are constrained by their high operating costs and the generation of secondary pollutants. This review aims to summarize research on the distribution and effects of antibiotics in aquatic environments, their interaction with other emerging contaminants, and their remediation strategy. The ecological risks associated with antibiotics in aquatic ecosystems and the need for more effective monitoring and detection system are also highlighted.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Raphael Nyaruaba
- Center for Biosafety Megascience, Wuhan Institute of Virology, CAS, Wuhan, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Richard Ekeng Ita
- Department of Biological Sciences Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Samuel Ukpong Okon
- Department of Marine Science, Akwa Ibom State University, Mkpat Enin, P.M.B. 1167, Nigeria; Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan 316021, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Charles Izuma Addey
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Chike C Ebido
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | | | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Organization of African Academic Doctor, Nairobi, Kenya.
| | - Kingsley Ikechukwu Chukwudozie
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya; Department of Clinical Medicine, School of Medicine, Jiangsu University 212013, PR China.
| |
Collapse
|
7
|
Parshukov AN, Fokina NN, Sukhovskaya IV, Kantserova NP, Lysenko LA. Infection and antibiotic treatment have prolonged effect on gut microbiota, muscle and hepatic fatty acids in rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 2022; 133:1709-1724. [PMID: 35717574 DOI: 10.1111/jam.15674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
AIMS The aim of the present study was to investigate the gastrointestinal (GI) microbiota and bacterium-specific fatty acid occurrence in the muscle and hepatic lipids of rainbow trout Oncorhynchus mykiss (Walbaum, 1792), both healthy and those naturally infected with bacterial pathogens. METHODS AND RESULTS From June 2017 (L1) to September 2018 (L8), 74 specimens of rainbow trout Oncorhynchus mykiss (with the average weight from 139.2 ± 7.1 g (L1) to 2191.7 ± 85.1 g (L8)) were studied. Amplicon sequencing targeted to the V3-V4 region of 16S rRNA gene fragments is used for identification of taxonomic composition of gut bacterial communities. Firmicutes, Bacteroidetes, Proteobacteria, Tenericutes, and Fusobacteria were the major phyla. Besides behavioural and physiological manifestations of the bacterial mixed disease (yersiniosis, pseudomonosis, and flavobacteriosis), some disorders induced both the infection and followed antibiotic treatment were detected in the host organism, including (1) a progressive decrease in the content of odd-chain saturated fatty acids of bacterial origin within the trout lipid molecules and (2) abnormalities in trout GI tract microbiota, such as the elimination of LAB and progressive occurrence of certain bacterial taxa, particularly Mycoplasmataceae. CONCLUSIONS The GI bacterial flora varied principally due to Mycoplasmataceae and Lactobacillaceae, which could be considered in the search for bioindicators. The content of specific bacterium-derived fatty acids incorporated into the lipids of trout muscle and hepatic seems to be related to the prevalence of bacterial taxa, and their deficit could be regarded as an early warning sign of microbiota disturbance. SIGNIFICANCE AND IMPACT OF STUDY Our results demonstrated that infectious disease and antibiotic treatment of reared species can cause pertinent imbalance in their gut microbiota and reduce the abundance of specific fatty acids. This can be useful for the sustainable aquaculture industry due to development of early indication technologies for rapid disease diagnosis.
Collapse
Affiliation(s)
- A N Parshukov
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
| | - N N Fokina
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
| | - I V Sukhovskaya
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
| | - N P Kantserova
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
| | - L A Lysenko
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
8
|
Sumithra TG, Sharma KSR, Gangadharan S, Suresh G, Prasad V, Amala PV, Sayooj P, Gop AP, Anil MK, Patil PK, Achamveetil G. Dysbiosis and Restoration Dynamics of the Gut Microbiome Following Therapeutic Exposure to Florfenicol in Snubnose Pompano (Trachinotus blochii) to Aid in Sustainable Aquaculture Production Strategies. Front Microbiol 2022; 13:881275. [PMID: 35707172 PMCID: PMC9189426 DOI: 10.3389/fmicb.2022.881275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Information on unintended effects of therapeutic exposure of antibiotics on the fish gut microbiome is a vital prerequisite for ensuring fish and environmental health during sustainable aquaculture production strategies. The present study forms the first report on the impact of florfenicol (FFC), a recommended antibiotic for aquaculture, on the gut microbiome of snubnose pompano (Trachinotus blochii), a high-value marine aquaculture candidate. Both culture-dependent and independent techniques were applied to identify the possible dysbiosis and restoration dynamics, pointing out the probable risks to the host and environment health. The results revealed the critical transient dysbiotic events in the taxonomic and functional metagenomic profiles and significant reductions in the bacterial load and diversity measures. More importantly, there was a complete restoration of gut microbiome density, diversity, functional metagenomic profiles, and taxonomic composition (up to class level) within 10–15 days of antibiotic withdrawal, establishing the required period for applying proper management measures to ensure animal and environment health, following FFC treatment. The observed transient increase in the relative abundance of opportunistic pathogens suggested the need to apply proper stress management measures and probiotics during the period. Simultaneously, the results demonstrated the inhibitory potential of FFC against marine pathogens (vibrios) and ampicillin-resistant microbes. The study pointed out the possible microbial signatures of stress in fish and possible probiotic microbes (Serratia sp., Methanobrevibacter sp., Acinetobacter sp., and Bacillus sp.) that can be explored to design fish health improvisation strategies. Strikingly, the therapeutic exposure of FFC neither caused any irreversible increase in antibiotic resistance nor promoted the FFC resistant microbes in the gut. The significant transient increase in the numbers of kanamycin-resistant bacteria and abundance of two multidrug resistance encoding genes (K03327 and K03585) in the treated fish gut during the initial 10 days post-withdrawal suggested the need for implementing proper aquaculture effluent processing measures during the period, thus, helps to reduce the spillover of antibiotic-resistant microbes from the gut of the treated fish to the environment. In brief, the paper generates interesting and first-hand insights on the implications of FFC treatment in the gut microbiome of a marine aquaculture candidate targeting its safe and efficient application in unavoidable circumstances. Implementation of mitigation strategies against the identified risks during the initial 15 days of withdrawal period is warranted to ensure cleaner and sustainable aquaculture production from aquatic animal and ecosystem health perspectives.
Collapse
Affiliation(s)
- T. G. Sumithra
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - Krupesha S. R. Sharma
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
- *Correspondence: Krupesha S. R. Sharma,
| | - Suja Gangadharan
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - Gayathri Suresh
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - Vishnu Prasad
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - P. V. Amala
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - P. Sayooj
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| | - Ambarish P. Gop
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, India
| | - M. K. Anil
- Vizhinjam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Thiruvananthapuram, India
| | - Prasanna Kumar Patil
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Gopalakrishnan Achamveetil
- Marine Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Kochi, India
| |
Collapse
|
9
|
Donati VL, Madsen L, Middelboe M, Strube ML, Dalsgaard I. The Gut Microbiota of Healthy and Flavobacterium psychrophilum-Infected Rainbow Trout Fry Is Shaped by Antibiotics and Phage Therapies. Front Microbiol 2022; 13:771296. [PMID: 35620089 PMCID: PMC9128845 DOI: 10.3389/fmicb.2022.771296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/07/2022] [Indexed: 01/15/2023] Open
Abstract
In the aquaculture sector, there is an increased interest in developing environmentally friendly alternatives to antibiotics in the treatment and prevention of bacterial infections. This requires an understanding of the effects of different treatments on the fish microbiota as a measure for improving the fish health status. In this study, we focused on the freshwater pathogen Flavobacterium psychrophilum and investigated the effects of antibiotics (florfenicol) and phage therapies on the gut microbiota of healthy and infected rainbow trout fry (1–2 g). Florfenicol-coated feed was administered for 10 days, starting two days after the infection procedure. A two-component mix of phage targeting F. psychrophilum (FpV4 and FPSV-D22) was continuously delivered by feed with a prophylactic period of 12 days. Samples of the distal intestine were collected over time (day -1 and 1, 8, and 33 days post-infection) and analyzed by community analysis targeting the 16S rRNA gene (V3–V4 region). Results showed the dysbiosis effect caused both by the infection and by florfenicol administration. Shifts in the overall composition were detected by β-diversity analysis, and changes in specific populations were observed during taxonomic mapping. Measures of α-diversity were only affected in infected fish (large variation observed 1 and 8 dpi). These community alterations disappeared again when fish recovered from the infection and the antibiotic treatment was terminated (33 dpi). Interestingly, phage addition altered the microbiota of the fish independently of the presence of their target bacterium. The overall gut bacterial community in fish fed phage-treated feed was different from the controls at each time point as revealed by β-diversity analysis. However, it was not possible to identify specific bacterial populations responsible for these changes except for an increase of lactic acid bacteria 33 dpi. Overall, the results indicate that the administered phages might affect the complex network of phage-bacteria interactions in the fish gut. Nevertheless, we did not observe negative effects on fish health or growth, and further studies should be directed in understanding if these changes are beneficial or not for the fish health with an additional focus on the host immune response.
Collapse
Affiliation(s)
- Valentina Laura Donati
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lone Madsen
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mathias Middelboe
- Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Inger Dalsgaard
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Ramírez C, Gutiérrez MS, Venegas L, Sapag C, Araya C, Caruffo M, López P, Reyes-Jara A, Toro M, González-Rocha G, Yáñez JM, Navarrete P. Microbiota composition and susceptibility to florfenicol and oxytetracycline of bacterial isolates from mussels (Mytilus spp.) reared on different years and distance from salmon farms. ENVIRONMENTAL RESEARCH 2022; 204:112068. [PMID: 34547250 DOI: 10.1016/j.envres.2021.112068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Chilean aquaculture mainly produces salmonids and molluscs. Salmonid production has been questioned by its excessive use of antimicrobials. This study aimed to investigate the bacterial microbiota composition of Mytilus spp. cultivated near salmonid farms and to determine the minimum inhibitory concentration (MIC) to florfenicol and oxytetracycline of its culturable bacteria. Seven Mytilus farming sites classified according to their proximity to salmon farms as close (CSF) or distant (DSF) were sampled in two years. We analyzed Mytilus microbiota composition through culture-independent methods, and isolated culturable bacteria, and identified those isolates with MIC values ≥ 64 μg mL-1 to florfenicol or oxytetracycline. Results revealed that the alpha diversity was affected by sampling year but not by Mytilus farming site location or its interaction. Nevertheless, in 2018, we observed a significant negative correlation between the alpha diversity of Mytilus microbiota in each farm sites and the tonnes of florfenicol reported for each phytosanitary management area. We detected significant differences in beta diversity and relative abundance of specific bacterial taxa in Mytilus microbiota depending on the proximity to salmon farms and years. A higher proportion of isolates with MIC values ≥ 64 μg mL-1 to both antibiotics was detected in 2019 compared to 2018, but not significant differences were detected according to Mytilus farming site location. However, in 2019, isolates from CSF sites showed higher MIC values for both antibiotics than those from DSF. Bacterial genera corresponding to isolates with MIC values ≥ 64 μg mL-1 represented a low proportion of Mytilus microbiota identified with the culture-independent approach, reflecting the need to implement new methodologies in the study of antimicrobial resistance. These results suggest that the proximity to salmonid farms and sampling year influence the Mytilus microbiota and MIC values of their bacterial isolates; however, other environmental variables should be considered in further studies.
Collapse
Affiliation(s)
- Carolina Ramírez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María Soledad Gutiérrez
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Chile
| | - Lucas Venegas
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | | | - Carolina Araya
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Mario Caruffo
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | - Paulina López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | - Angélica Reyes-Jara
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | - Magaly Toro
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile; Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - José Manuel Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Núcleo Milenio INVASAL, Concepción, Chile
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Chile.
| |
Collapse
|
11
|
Cerezo IM, Fumanal M, Tapia-Paniagua ST, Bautista R, Anguís V, Fernández-Díaz C, Alarcón FJ, Moriñigo MA, Balebona MC. Solea senegalensis Bacterial Intestinal Microbiota Is Affected by Low Dietary Inclusion of Ulva ohnoi. Front Microbiol 2022; 12:801744. [PMID: 35211100 PMCID: PMC8861459 DOI: 10.3389/fmicb.2021.801744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
The inclusion of macroalgae in the diets of farmed fish offers the opportunity for an added-value dietary ingredient to the nutraceutical feed. The composition of algae varies greatly among species. Several Ulva species have been considered in aquafeed formulations for different farmed fish, and Ulva ohnoi is being applied recently. However, the effects of seaweed dietary inclusion on the host must be evaluated. Considering the important role of the host intestinal microbiota, the potential effects of U. ohnoi dietary inclusion need to be studied. In this study, the characterization of the intestinal microbiome of Solea senegalensis, a flatfish with high potential for aquaculture in South Europe, receiving U. ohnoi (5%)-supplemented diet for 90 days has been carried out. In addition, the functional profiles of bacterial communities have been determined by using PICRUSt, a computational approach to predict the functional composition of a metagenome by using marker gene data and a database of reference genomes. The results show that long-term dietary administration of U. ohnoi (5%)-supplemented feed modulates S. senegalensis intestinal microbiota, especially in the posterior intestinal section. Increased relative abundance of Vibrio jointly with decreased Stenotrophomonas genus has been detected in fish receiving Ulva diet compared to control-fed fish. The influence of the diet on the intestinal functionality of S. senegalensis has been studied for the first time. Changes in bacterial composition were accompanied by differences in predicted microbiota functionality. Increased abundance of predicted genes involved in xenobiotic biodegradation and metabolism were observed in the microbiota when U. ohnoi diet was used. On the contrary, predicted percentages of genes associated to penicillin and cephalosporin biosynthesis as well as beta-lactam resistance were reduced after feeding with Ulva diet.
Collapse
Affiliation(s)
- Isabel M. Cerezo
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
- Unidad de Bioinformática – SCBI, Universidad de Málaga, Málaga, Spain
| | - Milena Fumanal
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
| | | | - Rocio Bautista
- Unidad de Bioinformática – SCBI, Universidad de Málaga, Málaga, Spain
| | | | | | | | - Miguel A. Moriñigo
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
| | - M. Carmen Balebona
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
| |
Collapse
|
12
|
Roy Choudhury A, Park JY, Kim DY, Choi J, Acharya S, Park JH. Exposure to Oxy-Tetracycline Changes Gut Bacterial Community Composition in Rainbow Trout: A Preliminary Study. Animals (Basel) 2021; 11:ani11123404. [PMID: 34944183 PMCID: PMC8698040 DOI: 10.3390/ani11123404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
The extensive use of antibiotics is evident in most of the livestock and aquaculture management for inhibiting pathogen infection. Korean aquaculture depends on the usage of oxy-tetracycline for growing rainbow trout. Hence, this study was conducted to evaluate the changes in gut bacterial community profiles of rainbow trout exposed to oxy-tetracycline and predict the metabolic functioning of the bacterial community. The gut bacterial community composition of oxy-tetracycline treated fish was assessed by amplicon sequencing targeting the 16S rRNA gene of bacteria and comparing with the control group that did not receive any antibiotic. The principle coordinate analysis and non-metric multidimensional scaling analysis had shown two distinct clusters that implies the changes in community composition. In phyla level, the relative abundances of Tenericutes and Firmicutes were observed to be significantly higher in oxy-tetracycline treated fish compared to the control. Furthermore, the prediction based metabolic profiling revealed the processes that are affected due to the shift in community profiles. For example, metabolic functioning of membrane efflux system, amino acid metabolism and glycolysis were significantly higher in oxy-tetracycline treated fish compared to the control. This study describes alteration in gut bacterial community composition and potential metabolic profiles of the community that might be responsible for surviving in antibiotic rich environment.
Collapse
Affiliation(s)
- Aritra Roy Choudhury
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
| | - Ji-Young Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
| | - Do Young Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
| | - Jeongyun Choi
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
| | - Satabdi Acharya
- Department of Bioactive Material Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea;
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
- Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
13
|
Luna GM, Quero GM, Kokou F, Kormas K. Time to integrate biotechnological approaches into fish gut microbiome research. Curr Opin Biotechnol 2021; 73:121-127. [PMID: 34365079 DOI: 10.1016/j.copbio.2021.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Like for other vertebrates, the fish microbiome is critical to the health of its host and has complex and dynamic interactions with the surrounding environment. Thus, the study of the fish microbiome can benefit from the new prospects gained by innovative biotechnological applications in human and other animals, that include manipulation of the associated microbial communities (to improve the health, productivity, and sustainability of fish production), in vitro gut simulators, synthetic microbial communities, and others. Here, we summarize the current state of knowledge on such biotechnological approaches to better understand and engineer the fish microbiome, as well as to advance our knowledge on host-microbes interactions. A particular focus is given to the most recent strategies for fish microbiome manipulation to improve fish health, food safety and environmental sustainability.
Collapse
Affiliation(s)
- Gian Marco Luna
- Institute for Marine Biological Resources and Biotechnology, National Research Council (IRBIM-CNR), Ancona, Italy
| | - Grazia Marina Quero
- Institute for Marine Biological Resources and Biotechnology, National Research Council (IRBIM-CNR), Ancona, Italy
| | - Fotini Kokou
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University and Research, 6700AH Wageningen, The Netherlands
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 384 46 Volos, Greece.
| |
Collapse
|
14
|
Maas RM, Deng Y, Dersjant-Li Y, Petit J, Verdegem MCJ, Schrama JW, Kokou F. Exogenous enzymes and probiotics alter digestion kinetics, volatile fatty acid content and microbial interactions in the gut of Nile tilapia. Sci Rep 2021; 11:8221. [PMID: 33859242 PMCID: PMC8050056 DOI: 10.1038/s41598-021-87408-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Sustainable aquafeed production requires fishmeal replacement, leading to an increasing use of plant-derived ingredients. As a consequence, higher levels of antinutritional substances, such as non-starch polysaccharides and phytate, are present in aquafeeds, with negative effects on fish performance, nutrient digestibility and overall gut health. To alleviate these negative effects, providing exogenous digestive enzymes and/or probiotics can be an effective solution. In this study, we tested the effect of dietary supplementation of enzymes (phytase and xylanase) and probiotics (three strains of Bacillus amyloliquefaciens) on nutrient digestion kinetics and volatile fatty acid content along the gut, and the distal gut microbiome diversity in Nile tilapia. Chyme volatile fatty content was increased with probiotic supplementation in the proximal gut, while lactate content, measured for the first time in vivo in fish, decreased with enzymes along the gut. Enzyme supplementation enhanced crude protein, Ca and P digestibility in proximal and middle gut. Enzymes and probiotics supplementation enhanced microbial interactions as shown by network analysis, while increased the abundance of lactic acid bacteria and Bacillus species. Such results suggest that supplementation with exogenous enzymes and probiotics increases nutrient availability, while at the same time benefits gut health and contributes to a more stable microbiome environment.
Collapse
Affiliation(s)
- Roel M. Maas
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yale Deng
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Jules Petit
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Marc C. J. Verdegem
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Johan W. Schrama
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Fotini Kokou
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
15
|
Knobloch S, Philip J, Ferrari S, Benhaïm D, Bertrand M, Poirier I. The effect of ultrasonic antifouling control on the growth and microbiota of farmed European sea bass (Dicentrarchus labrax). MARINE POLLUTION BULLETIN 2021; 164:112072. [PMID: 33529875 DOI: 10.1016/j.marpolbul.2021.112072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 05/11/2023]
Abstract
Biofouling is a serious threat to marine renewable energy structures and marine aquaculture operations alike. As an alternative to toxic surface coatings, ultrasonic antifouling control has been proposed as an environmentally friendly means to reduce biofouling. However, the impact of ultrasound on fish farmed in offshore structures or in marine multi-purpose platforms, combining renewable energy production and aquaculture, has not yet been assessed. Here we study the impact of ultrasound on the growth and microbiota of farmed European sea bass (Dicentrarchus labrax) under laboratory conditions. Whereas growth and survival were not reduced by ultrasound exposure, microbiological analysis using plate counts and 16S rRNA gene based metataxonomics showed a perturbation of the gill and skin microbiota, including an increase in putative pathogenic bacteria. This warrants further research into the long-term effects of ultrasonic antifouling control on the health and wellbeing of farmed fish.
Collapse
Affiliation(s)
- Stephen Knobloch
- Matís ohf., Microbiology Group, Vínlandsleid 12, 113 Reykjavík, Iceland
| | - Joris Philip
- Hólar University, Department of Aquaculture and Fish Biology, Háeyri 1, 550 Saudárkrókur, Iceland
| | - Sébastien Ferrari
- Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de la Mer, EPN8, Boulevard Collignon, Tourlaville, 50110 Cherbourg en Cotentin, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France
| | - David Benhaïm
- Hólar University, Department of Aquaculture and Fish Biology, Háeyri 1, 550 Saudárkrókur, Iceland; Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de la Mer, EPN8, Boulevard Collignon, Tourlaville, 50110 Cherbourg en Cotentin, France
| | - Martine Bertrand
- Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de la Mer, EPN8, Boulevard Collignon, Tourlaville, 50110 Cherbourg en Cotentin, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France
| | - Isabelle Poirier
- Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de la Mer, EPN8, Boulevard Collignon, Tourlaville, 50110 Cherbourg en Cotentin, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France.
| |
Collapse
|