1
|
Chen T, He S, Zhang J, Wang H, Jia Y, Liu Y, Xie M, Cheng G. Effects of Ultra-High-Pressure Treatment on Chemical Composition and Biological Activities of Free, Esterified and Bound Phenolics from Phyllanthus emblica L. Fruits. Molecules 2024; 29:3181. [PMID: 38999132 PMCID: PMC11243165 DOI: 10.3390/molecules29133181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Phyllanthus emblica L. fruits (PEFs) were processed by ultra-pressure (UHP) treatment and then extracted by the ultrasonic-assisted extraction method. The influence of UHP on the phenolic composition, enzyme inhibitory activity and antioxidant activity of the free, esterified, and bound phenolic fractions from PEFs were compared. UHP pretreatment of PEFs significantly increased the total phenolic and flavonoid contents (p < 0.05). A total of 24 chemical compositions were characterized in normal and UHP-treated PEFs by UHPLC-ESI-HRMS/MS. Compared with normal PEFs, these three different phenolic fractions had stronger antioxidant activities and inhibitory effects on the intracellular reactive oxygen species (ROS) production in H2O2-induced HepG2 cells (p < 0.05). The ROS inhibition might be due to an up-regulation of the expressions of superoxide dismutase (SOD) and glutathione (GSH) activities. In addition, these three different phenolic fractions also significantly inhibited the activities of metabolic enzymes, including α-glucosidase, α-amylase and pancreatic lipase. This work may provide some insights into the potential economics and applications of PEFs in food and nutraceutical industries.
Collapse
Affiliation(s)
- Taiming Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.C.); (J.Z.); (H.W.); (Y.J.); (Y.L.)
| | - Shuyue He
- Linyi Technician Institute, Linyi 276005, China;
| | - Jing Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.C.); (J.Z.); (H.W.); (Y.J.); (Y.L.)
| | - Huangxin Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.C.); (J.Z.); (H.W.); (Y.J.); (Y.L.)
| | - Yiqing Jia
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.C.); (J.Z.); (H.W.); (Y.J.); (Y.L.)
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.C.); (J.Z.); (H.W.); (Y.J.); (Y.L.)
| | - Mingjun Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.C.); (J.Z.); (H.W.); (Y.J.); (Y.L.)
| |
Collapse
|
2
|
Lee J, Lee JH, Lee SY, Park SA, Kim JH, Hwang D, Kim KA, Kim HS. Antioxidant Iron Oxide Nanoparticles: Their Biocompatibility and Bioactive Properties. Int J Mol Sci 2023; 24:15901. [PMID: 37958885 PMCID: PMC10649306 DOI: 10.3390/ijms242115901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
A lot of nanomaterials have been applied to various nano-biotechnological fields, such as contrast agents, drug or gene delivery systems, cosmetics, and so on. Despite the expanding usage of nanomaterials, concerns persist regarding their potential toxicity. To address this issue, many scientists have tried to develop biocompatible nanomaterials containing phytochemicals as a promising solution. In this study, we synthesized biocompatible nanomaterials by using gallic acid (GA), which is a phytochemical, and coating it onto the surface of iron oxide nanoparticles (IONPs). Importantly, the GA-modified iron oxide nanoparticles (GA-IONPs) were successfully prepared through environmentally friendly methods, avoiding the use of harmful reagents and extreme conditions. The presence of GA on the surface of IONPs improved their stability and bioactive properties. In addition, cell viability assays proved that GA-IONPs possessed excellent biocompatibility in human dermal papilla cells (HDPCs). Additionally, GA-IONPs showed antioxidant activity, which reduced intracellular reactive oxygen species (ROS) levels in an oxidative stress model induced by hydrogen peroxide (H2O2). To investigate the impact of GA-IONPs on exosome secretions from oxidative stress-induced cells, we analyzed the number and characteristics of exosomes in the culture media of HDPCs after H2O2 stimulation or GA-IONP treatment. Our analysis revealed that both the number and proportions of tetraspanins (CD9, CD81, and CD63) in exosomes were similar in the control group and the GA-IONP-treated groups. In contrast, exosome secretion was increased, and the proportion of tetraspanin was changed in the H2O2-treated group compared to the control group. It demonstrated that treatment with GA-IONPs effectively attenuated exosome secretion induced by H2O2-induced oxidative stress. Therefore, this GA-IONP exhibited outstanding promise for applications in the field of nanobiotechnology.
Collapse
Affiliation(s)
- Jaewook Lee
- Research Institute for Biomolecular Chemistry, Dongguk University, Seoul 04620, Republic of Korea
| | - Ji-Heon Lee
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jungpyeong 27909, Republic of Korea
| | - Seung-Yeul Lee
- Genomictree, Inc., 44-6 10-ro Techno, Daejeon 34027, Republic of Korea
| | - Sin A Park
- Genomictree, Inc., 44-6 10-ro Techno, Daejeon 34027, Republic of Korea
| | - Jae Hoon Kim
- Genomictree, Inc., 44-6 10-ro Techno, Daejeon 34027, Republic of Korea
| | - Dajeong Hwang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung A Kim
- Yonsei Cancer Center, Seoul 30722, Republic of Korea (H.S.K.)
| | - Han Sang Kim
- Yonsei Cancer Center, Seoul 30722, Republic of Korea (H.S.K.)
- Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
El-Zeftawy M, Ghareeb D. Pharmacological bioactivity of Ceratonia siliqua pulp extract: in vitro screening and molecular docking analysis, implication of Keap-1/Nrf2/NF-ĸB pathway. Sci Rep 2023; 13:12209. [PMID: 37500735 PMCID: PMC10374561 DOI: 10.1038/s41598-023-39034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Inflammation is interfaced with various metabolic disorders. Ceratonia siliqua (CS) has a higher pharmaceutical purpose. The research aimed to investigate the biofunction of CS pulp aqueous extract (CS-PAE) with an emphasis on its integrated computational approaches as opposed to different specific receptors contributing to inflammation. The extract was assessed for its chemical and phenolic components via GC-MS, LC-MS, HPLC, and total phenolic and flavonoid content. In vitro, bioactivities and molecular docking were analyzed. Findings indicate that CS-PAE demonstrated higher scavenging activities of nitric oxide, 1,1-diphenyl-2-picrylhydrazyl radical, superoxide anion, hydrogen peroxide, and anti-lipid peroxidation (IC50 values were 5.29, 3.04, 0.63, 7.35 and 9.6 mg/dl, respectively). The extract revealed potent inhibition of RBCs hemolysis, acetylcholine esterase, monoamine oxidase-B, and α-glucosidase enzymes (IC50 was 13.44, 9.31, 2.45, and 1.5 mg/dl, respectively). The extract exhibited a cytotoxic effect against prostate cancer Pc3, liver cancer HepG2, colon cancer Caco2, and lung cancer A549 cell lines. Moreover, CS-PAE owned higher antiviral activity against virus A and some bacteria. When contrasting data from molecular docking, it was reported that both apigenin-7-glucoside and rutin in CS-PAE have a good affinity toward the Keap-1/Nrf2/ NF-ĸB pathway. In conclusion, CS-PAE showed promise in therapeutic activity in metabolic conditions.
Collapse
Affiliation(s)
- Marwa El-Zeftawy
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, New Valley University, El-Kharga, New Valley, Egypt.
| | - Doaa Ghareeb
- Biological Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Saetang J, Sukkapat P, Mittal A, Julamanee J, Khopanlert W, Maneechai K, Nazeer RA, Sangkhathat S, Benjakul S. Proteome Analysis of the Antiproliferative Activity of the Novel Chitooligosaccharide-Gallic Acid Conjugate against the SW620 Colon Cancer Cell Line. Biomedicines 2023; 11:1683. [PMID: 37371778 DOI: 10.3390/biomedicines11061683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Chitooligosaccharide (COS) and gallic acid (GA) are natural compounds with anti-cancer properties, and their conjugate (COS-GA) has several biological activities. Herein, the anti-cancer activity of COS-GA in SW620 colon cancer cells was investigated. MTT assay was used to evaluate cell viability after treatment with 62.5, 122, and 250 µg/mL of COS, GA, and COS-GA for 24 and 48 h. The number of apoptotic cells was determined using flow cytometry. Proteomic analysis was used to explore the mechanisms of action of different compounds. COS-GA and GA showed a stronger anti-cancer effect than COS by reducing SW620 cell proliferation at 125 and 250 µg/mL within 24 h. Flow cytometry revealed 20% apoptosis after COS-GA treatment for 24 h. Thus, GA majorly contributed to the enhanced anti-cancer activity of COS via conjugation. Proteomic analysis revealed alterations in protein translation and DNA duplication in the COS group and the structural constituents of the cytoskeleton, intermediate filament organization, the mitochondrial nucleoid, and glycolytic processes in the COS-GA group. Anti-cancer-activity-related proteins were altered, including CLTA, HSPA9, HIST2H2BF, KRT18, HINT1, DSP, and VIM. Overall, the COS-GA conjugate can serve as a potential anti-cancer agent for the safe and effective treatment of colon cancer.
Collapse
Affiliation(s)
- Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Phutthipong Sukkapat
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Jakrawadee Julamanee
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Wannakorn Khopanlert
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Kajornkiat Maneechai
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Surasak Sangkhathat
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Torres SM, Carmo FP, Monteiro LC, Silva C, Andrade N, Martel F. Gallic acid markedly stimulates GLUT1-mediated glucose uptake by the AsPC-1 pancreatic cancer cell line. Can J Physiol Pharmacol 2023; 101:90-105. [PMID: 36688470 DOI: 10.1139/cjpp-2022-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Phenolic acids are recognized as chemopreventive and chemotherapeutic agents. Altered glucose and glutamine metabolism are recognized hallmarks of cancer cells. We aimed to test the influence of phenolic acids on glucose and glutamine cellular uptake by a breast (MCF-7) and a pancreatic (AsPC-1) cancer cell line. Several phenolic acids (caffeic, ferrulic, proctocatechuic, coumaric and gallic acid) affected 3H-glutamine and/or 3H-deoxy-d-glucose (3H-DG) uptake. Gallic acid (100 µM) caused a 3-fold increase in 3H-DG uptake by AsPC-1 cells, associated with a 3.7-fold increase in lactic acid production. Gallic acid stimulated GLUT1-mediated 3H-DG uptake and increased the affinity of this transporter for 3H-DG. We further verified that gallic acid does not change GLUT1 transcription rates and cellular redox state and that its effect does not involve PI3K, mTOR and MAP kinases and is not associated with a proproliferative effect. Gallic acid also increased 3H-DG uptake by MCF-7 cells, although less potently. Further investigation is necessary to elucidate the cellular pathways involved in this effect of gallic acid.
Collapse
Affiliation(s)
| | - Francisca P Carmo
- Faculty of Sciences, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Luís C Monteiro
- Faculty of Sciences, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Mišković Špoljarić K, Šelo G, Pešut E, Martinović J, Planinić M, Tišma M, Bucić-Kojić A. Antioxidant and antiproliferative potentials of phenolic-rich extracts from biotransformed grape pomace in colorectal Cancer. BMC Complement Med Ther 2023; 23:29. [PMID: 36726100 PMCID: PMC9890866 DOI: 10.1186/s12906-023-03852-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Colorectal carcinoma is one of the most commonly diagnosed malignancies worldwide. Consumption of dietary supplements and nutraceuticals such as phenolic compounds may help combat colorectal carcinoma. The effect of two phenolic-rich extracts prepared from biotransformed grape pomace on the antioxidant properties and antiproliferative activity against two colorectal cancer cell lines (Caco-2 and SW620) were investigated. METHODS A 15-day solid-state fermentation with the white-rot fungi Phanerochaete chrysosporium and Trametes gibbosa was used to biotransform grape pomace. Solid-liquid extraction was then performed to extract bioactive compounds. The extract was analyzed for the determination of phenolic compounds by ultra-high performance liquid chromatography and in vitro assays of biological activities (antioxidant activity, antiproliferative activity, cell cycle analysis). RESULTS The 4 days of solid-state fermentation proved to be the optimal period to obtain the maximum yield of phenolic compounds. The tested extracts showed significant antioxidant and antiproliferative activities. Grape pomace treated with P. chrysosporium and T. gibbosa reduced cancer cell growth by more than 60% at concentrations (solid/liquid ratio) of 1.75 mg/mL and of 2.5 mg/mL, respectively. The cell cycle perturbations induced by the grape pomace extracts resulted in a significant increase in the number of cells in the S (9.8%) and G2/M (6.8%) phases of SW620 exposed to T. gibbosa after 48 hours, while P. chrysosporium increased the percentage of cells in the G1 phase by 7.7%. The effect of grape pomace extracts on Caco-2 was less pronounced. CONCLUSIONS The obtained results suggest the presence of bioactive compounds in biotransformed grape pomace as a residue from winemaking, which could be used to prevent colon cancer.
Collapse
Affiliation(s)
- Katarina Mišković Špoljarić
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Medicine, Josipa Hutlera 4, 31000 Osijek, Croatia
| | - Gordana Šelo
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Ena Pešut
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Medicine, Josipa Hutlera 4, 31000 Osijek, Croatia
| | - Josipa Martinović
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Mirela Planinić
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Marina Tišma
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Ana Bucić-Kojić
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| |
Collapse
|
7
|
Liang F, Hu J, Liu B, Li L, Yang X, Bai C, Tan X. New Evidence of Semi-Mangrove Plant Barringtonia racemosa in Soil Clean-Up: Tolerance and Absorption of Lead and Cadmium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12947. [PMID: 36232247 PMCID: PMC9566725 DOI: 10.3390/ijerph191912947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Mangrove plants play an important role in the remediation of heavy-metal-contaminated estuarine and coastal areas; Barringtonia racemosa is a typical semi-mangrove plant. However, the effect of heavy metal stress on this plant has not been explored. In this study, tolerance characteristics and the accumulation profile of cadmium (Cd) and lead (Pb) in B. racemosa were evaluated. The results indicated that B. racemosa exhibited a high tolerance in single Cd/Pb and Cd + Pb stress, with a significant increase in biomass yield in all treatment groups, a significant increase in plant height, leaf area, chlorophyll and carotenoid content in most treatment groups and without significant reduction of SOD, POD, MDA, proline content, Chl a, Chl b, Chl a + b, Car, ratio of Chl a:b and ratio of Car:Chl (a + b). Cd and Pb mainly accumulated in the root (≥93.43%) and the content of Cd and Pb in B. racemosa was root > stem > leaf. Pb showed antagonistic effects on the Cd accumulation in the roots and Cd showed antagonistic or synergistic effects on the Pb accumulation in the roots, which depended on the concentration of Cd and Pb. There was a significant synergistic effect of Cd and Pb enrichment under a low Cd and Pb concentration treatment. Thus, phytoremediation could potentially use B. racemosa for Cd and Pb.
Collapse
Affiliation(s)
- Fang Liang
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin 537000, China
| | - Ju Hu
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin 537000, China
| | - Bing Liu
- Forestry of College, Guangxi University, Nanning 530001, China
| | - Lin Li
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Xiuling Yang
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Caihong Bai
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin 537000, China
| | - Xiaohui Tan
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China
| |
Collapse
|
8
|
da Silva RC, Fagundes RR, Faber KN, Campos ÉG. Pro-Oxidant and Cytotoxic Effects of Tucum-Do-Cerrado ( Bactris setosa Mart.) Extracts in Colorectal Adenocarcinoma Caco-2 Cells. Nutr Cancer 2022; 74:3723-3734. [PMID: 35703849 DOI: 10.1080/01635581.2022.2086704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Colorectal cancer is one of the most common types of cancer. Bioactive natural compounds can act in cancer chemoprevention as tumor growth inhibitors. Tucum-do-cerrado (Bactris setosa Mart.) is a Brazilian fruit that contains several phenolic compounds. This study investigated the effect of tucum aqueous extract in Caco-2 cells in comparison to primary human intestinal organoids and fibroblasts. Cells were exposed to 0.5 and 1 mg/ml of tucum aqueous extract for 24 h. ROS production, mRNA levels for SOD1 and SOD2, CAT, GPX1, NFE2L2, HIF1A and NOS2 were evaluated in Caco-2 cells exposed to tucum extract. Cell viability of Caco-2 cells was decreased upon tucum extract exposure. Mitochondrial ROS levels increased in Caco-2 cells exposed to tucum extract. The mRNA levels of SOD1, SOD2, CAT, GPX, NFE2L2 and HIF1A were downregulated in Caco-2 cells exposed to tucum extract, while NOS2 mRNA levels remained unchanged. Protein levels of SOD2, CAT and NRF2 remained unchanged in Caco-2 cells treated with tucum extract, indicating that catalase and SOD2 cellular functions may be unaffected by the tucum extract at 24 h, of exposure. Aqueous extract of tucum-do-cerrado may induce cellular toxicity in a cancer cell-specific manner, possibly through increased mitochondrial ROS production and gene expression regulation.
Collapse
Affiliation(s)
- Renata Cristina da Silva
- Programa de Pós-Graduação em Nutrição Humana, Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.,Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Raphael Rosa Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Élida Geralda Campos
- Programa de Pós-Graduação em Nutrição Humana, Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
9
|
Kooshki L, Mahdavi P, Fakhri S, Akkol EK, Khan H. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. Biofactors 2022; 48:359-383. [PMID: 34724274 DOI: 10.1002/biof.1799] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Anticancer drugs are not purely effective because of their toxicity, side effects, high cost, inaccessibility, and associated resistance. On the other hand, cancer is a complex public health problem that could intelligently adopt different signaling pathways and alter the body's metabolism to escape from the immune system. One of the cancer strategies to metastasize is modifying pH in the tumor microenvironment, ranging between 6.5 and 6.9. As a powerful determiner, lactate is responsible for this acidosis. It is involved in immune stimulation, including innate and adaptive immunity, apoptotic-related factors (Bax/Bcl-2, caspase), and glycolysis pathways (e.g., GLUT-1, PKM2, PFK, HK2, MCT-1, and LDH). Lactate metabolism, in turn, is interconnected with several dysregulated signaling mediators, including PI3K/Akt/mTOR, AMPK, NF-κB, Nrf2, JAK/STAT, and HIF-1α. Because of lactate's emerging and critical role, targeting lactate production and its transporters is important for preventing and managing tumorigenesis. Hence, exploring and developing novel promising anticancer agents to minimize human cancers is urgent. Based on numerous studies, natural secondary metabolites as multi-target alternative compounds with health-promoting properties possess more high effectiveness and low side effects than conventional agents. Besides, the mechanism of multi-targeted natural sources is related to lactate production and cancer-associated cross-talked factors. This review focuses on targeting the lactate metabolism/transporters, and lactate-associated mediators, including glycolytic pathways. Besides, interconnected mediators to lactate metabolism are also targeted by natural products. Accordingly, plant-derived secondary metabolites are introduced as alternative therapies in combating cancer through modulating lactate metabolism and glycolytic pathways.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
10
|
Sitohang NA, Putra EDL, Kamil H, Musman M. Acceleration of wound healing by topical application of gel formulation of Barringtonia racemosa (L.) Spreng kernel extract. F1000Res 2022; 11:191. [PMID: 35356313 PMCID: PMC8933646 DOI: 10.12688/f1000research.104602.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 08/26/2024] Open
Abstract
Background: Phytomedicines are gaining a spotlight in wound management, where much research has suggested the wound healing potential of Barringtonia racemosa. The objective of this study was to investigate the effectiveness of B. racemosa kernel extract in accelerating wound healing process in animal models. Methods:B. racemosa kernel was extracted using ethanol:water (7:3) solvent and was then used as a bioactive ingredient in a Carbopol 940-based gel formulation in four different concentrations (1, 3, 5 and 7 ppm). A 3 cm diameter wound was made in the dorsal area of Rattus norvegicus rat and wound healing process was assessed up to 12 days using DESIGN (Depth, Exudate, Size of Inflammation/Infection, Granulation tissue, and Necrotic tissue) scoring system. Results: Our data suggested that the DESIGN scores were significantly different among concentration groups after the 3 rd day onward suggesting B. racemosa extract accelerated the wound healing process. Rats treated with gel formulation containing 7 ppm of B. racemosa kernel extract had faster wound healing than that treated with topical Metcovazin. Conclusion:B. racemosa kernel extract was effective in accelerating wound healing on rats. Further study is warranted to purify the bioactive component and the action mechanism in wound healing process.
Collapse
Affiliation(s)
- Nur A. Sitohang
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Faculty of Nursing, Universitas Sumatera Utara, Medan, 20222, Indonesia
| | | | - Hajjul Kamil
- Faculty of Nursing, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Musri Musman
- Faculty of Education and Teachers’ Training, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|
11
|
Sitohang NA, Putra EDL, Kamil H, Musman M. Acceleration of wound healing by topical application of gel formulation of Barringtonia racemosa (L.) Spreng kernel extract. F1000Res 2022; 11:191. [PMID: 35356313 PMCID: PMC8933646 DOI: 10.12688/f1000research.104602.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Phytomedicines are gaining a spotlight in wound management, where much research has suggested the wound healing potential of Barringtonia racemosa. The objective of this study was to investigate the effectiveness of B. racemosa kernel extract in accelerating wound healing process in animal models. Methods:B. racemosa kernel was extracted using ethanol:water (7:3) solvent and was then used as a bioactive ingredient in a Carbopol 940-based gel formulation in four different concentrations (1, 3, 5 and 7 ppm). A 3 cm diameter wound was made in the dorsal area of Rattus norvegicus rat and wound healing process was assessed up to 12 days using DESIGN (Depth, Exudate, Size of Inflammation/Infection, Granulation tissue, and Necrotic tissue) scoring system. Results: Our data suggested that the DESIGN scores were significantly different among concentration groups after the 3 rdday onward suggesting B. racemosa extract accelerated the wound healing process. Rats treated with gel formulation containing 7 ppm of B. racemosa kernel extract had faster wound healing than that treated with topical Metcovazin. On day 6, macroscopic observation on 7 ppm group revealed that the wound had persistent redness, lesion area of < 3 cm 2, and 80% healthy granulation, where presence of exudate and redness were not observable. Conclusion:B. racemosa kernel extract was effective in accelerating wound healing on rats. Further study is warranted to purify the bioactive component and the action mechanism in wound healing process.
Collapse
Affiliation(s)
- Nur A. Sitohang
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Faculty of Nursing, Universitas Sumatera Utara, Medan, 20222, Indonesia
| | | | - Hajjul Kamil
- Faculty of Nursing, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Musri Musman
- Faculty of Education and Teachers’ Training, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|
12
|
Tuli HS, Mistry H, Kaur G, Aggarwal D, Garg VK, Mittal S, Yerer MB, Sak K, Khan MA. Gallic acid: a dietary polyphenol that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Anticancer Agents Med Chem 2021; 22:499-514. [PMID: 34802408 DOI: 10.2174/1871520621666211119085834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/08/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022]
Abstract
Phytochemicals are being used for thousands of years to prevent dreadful malignancy. Side effects of existing allopathic treatment have also initiated intense research in the field of bioactive phytochemicals. Gallic acid, a natural polyphenolic compound, exists freely as well as in polymeric forms. The anti-cancer properties of gallic acid are indomitable by a variety of cellular pathways such as induction of programmed cell death, cell cycle apprehension, reticence of vasculature and tumor migration, and inflammation. Furthermore, gallic acid is found to show synergism with other existing chemotherapeutic drugs. Therefore, the antineoplastic role of gallic acid suggests its promising therapeutic candidature in the near future. The present review describes all these aspects of gallic acid at a single platform. In addition nanotechnology-mediated approaches are also discussed to enhance bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana. India
| | - Hiral Mistry
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, Maharashtra. India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, Maharashtra. India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana. India
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali - 140413, Punjab. India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi. India
| | - Mükerrem Betül Yerer
- Erciyes University, Faculty of Pharmacy Department of Pharmacology, Erciyes University Drug Application and Research Center, 05056784551. Turkey
| | | | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000. China
| |
Collapse
|
13
|
Dubey VK, Madan S, Rajput SK, Singh AT, Jaggi M, Mittal AK. Single and repeated dose (28 days) intravenous toxicity assessment of bartogenic acid (an active pentacyclic triterpenoid) isolated from Barringtonia racemosa (L.) fruits in mice. Curr Res Toxicol 2021; 3:100057. [PMID: 36504921 PMCID: PMC9731886 DOI: 10.1016/j.crtox.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/16/2021] [Accepted: 10/23/2021] [Indexed: 12/15/2022] Open
Abstract
Bartogenic acid (BA), an active pentacyclic triterpenoid, has been reported for anti-diabetic, anti-inflammatory, anti-arthritic, anti-cancer, and anti-tumor activity. However, toxicity profiling of BA has not been reported till date. Hence, this study is designed to evaluate the single dose (12.5, 25, 50 and 100 mg/kg) and repeated dose (1.5, 6, and 24 mg/kg) intravenous toxicity of BA in BALB/c mice. Control group received vehicle. In single dose toxicity study, two mortalities were observed at 100 mg/kg of BA whereas lower doses were well tolerated. In repeated dose toxicity study, no mortality was observed. 1.5 mg/kg of BA was well tolerated in mice of both sexes. At 6 mg/kg of BA, female mice showed significant reduction in the body weight as compared to the control group however no significant change was observed in male mice. 24 mg/kg of BA showed significant reduction in the body weight in mice of both sexes. Further, these mice showed significant change in the relative organ weight. However, no toxicologically relevant changes were observed in hematology, biochemistry, and histopathology. Based on the findings, No-Observed-Adverse-Effect-Level (NOAEL) for BA were found to be<24 mg/kg for male mice and<6 mg/kg for female mice.
Collapse
Key Words
- AAALAC, Association For Assessment And Accreditation Of Laboratory Animal Care
- ALP, Alkaline Phosphatase
- ALT, Alanine Aminotransferase
- AST, Aspartate Aminotransferase
- Acute
- BA, Bartogenic Acid
- BUN, Blood Urea Nitrogen
- Barringtonia racemosa
- Bartogenic acid
- FDA, Food And Drug Administration
- GLP, Good Laboratory Practice
- H&E, Hematoxylin–Eosin
- HCT, Hematocrit
- LC/MS, Liquid chromatography–mass spectrometry
- MCH, Mean Corpuscular Hemoglobin
- MCHC, Mean Corpuscular Hemoglobin Concentration
- MCV, Mean Corpuscular Volume
- Mice
- NMR, Nuclear Magnetic Resonance
- NOAEL
- NOAEL, No Observed Adverse Effect Level
- OA, Oleanolic Acid
- OECD, Organization For Economic Co-Operation And Development
- RBC, Red Blood Cells Count
- RDW-CV, Red Cell Distribution Width - Coefficient Of Variation
- SEM, Standard Error Of The Mean
- TLC, Total Leukocyte Count
- Toxicity
- UA, Ursolic Acid
- UHPLC, Ultra High Performance Liquid Chromatography
- VLDL, Very Low Density Lipoprotein
- b.wt., Body Weight
Collapse
Affiliation(s)
- Vishal Kumar Dubey
- Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad 201010, Uttar Pradesh, India
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida 201313, Uttar Pradesh, India
- Corresponding author at: Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad 201010, Uttar Pradesh, India
| | - Swati Madan
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida 201313, Uttar Pradesh, India
| | - Satyendra K. Rajput
- Department of Pharmaceutical Sciences, Gurukula Kangri Vishwavidyalaya, Jagjeetpur, Haridwar 249404, Uttarakhand, India
| | - Anu T Singh
- Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad 201010, Uttar Pradesh, India
| | - Manu Jaggi
- Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad 201010, Uttar Pradesh, India
| | - Amit Kumar Mittal
- Amity Institute of Pharmacy, Amity University Noida, Uttar Pradesh, 322230 India
| |
Collapse
|
14
|
Ashrafizadeh M, Zarrabi A, Mirzaei S, Hashemi F, Samarghandian S, Zabolian A, Hushmandi K, Ang HL, Sethi G, Kumar AP, Ahn KS, Nabavi N, Khan H, Makvandi P, Varma RS. Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem Toxicol 2021; 157:112576. [PMID: 34571052 DOI: 10.1016/j.fct.2021.112576] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 07/23/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide. Majority of recent research efforts in the field aim to address why cancer resistance to therapy develops and how to overcome or prevent it. In line with this, novel anti-cancer compounds are desperately needed for chemoresistant cancer cells. Phytochemicals, in view of their pharmacological activities and capacity to target various molecular pathways, are of great interest in the development of therapeutics against cancer. Plant-derived-natural products have poor bioavailability which restricts their anti-tumor activity. Gallic acid (GA) is a phenolic acid exclusively found in natural sources such as gallnut, sumac, tea leaves, and oak bark. In this review, we report on the most recent research related to anti-tumor activities of GA in various cancers with a focus on its underlying molecular mechanisms and cellular pathwaysthat that lead to apoptosis and migration of cancer cells. GA down-regulates the expression of molecular pathways involved in cancer progression such as PI3K/Akt. The co-administration of GA with chemotherapeutic agents shows improvements in suppressing cancer malignancy. Various nano-vehicles such as organic- and inorganic nano-materials have been developed for targeted delivery of GA at the tumor site. Here, we suggest that nano-vehicles improve GA bioavailability and its ability for tumor suppression.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farid Hashemi
- Phd student of pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
15
|
Down-regulation of RBP4 indicates a poor prognosis and correlates with immune cell infiltration in hepatocellular carcinoma. Biosci Rep 2021; 41:228242. [PMID: 33834191 PMCID: PMC8055798 DOI: 10.1042/bsr20210328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Recent research has indicated that metabolically related genes play crucial roles in the pathogenesis of hepatocellular carcinoma (HCC). We evaluated the associations between novel biomarkers and retinol-binding protein 4 (RBP4) for predicting clinical HCC outcomes, hub-related genes, pathway regulation, and immune cells infiltration. Bioinformatic analyses based on data from The Cancer Genome Atlas were performed using online analysis tools. RBP4 expression was low in HCC and was also down-regulated in pan-cancers compared with normal tissues. RBP4 expression was also significantly different based on age (41–60 years old versus 61–80 years old), and low RBP4 expression levels were associated with advanced tumor stages and grades. Higher RBP4 expression was associated with better overall survival time in HCC patients, and we identified a deletion-mutation rate of 1.4% in RBP4. We also identified ten co-expressed genes most related to RBP4 and explored the relationships between six hub genes (APOB, FGA, FGG, SERPINC1, APOA1, and F2) involved in RBP4 regulation. A pathway enrichment analysis for RBP4 indicated complement and coagulation cascades, metabolic pathways, antibiotic biosynthesis pathways, peroxisome proliferator-activated receptor signaling pathways, and pyruvate metabolism pathways. These results suggest that RBP4 may be a novel biomarker for HCC prognosis, and an indicator of low immune response to the disease.
Collapse
|
16
|
Lin SH, Luo P, Yuan E, Zhu X, Zhang B, Wu X. Physiological and Proteomic Analysis of Penicillium digitatum in Response to X33 Antifungal Extract Treatment. Front Microbiol 2020; 11:584331. [PMID: 33240238 PMCID: PMC7677231 DOI: 10.3389/fmicb.2020.584331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022] Open
Abstract
Penicillium digitatum is a widespread pathogen among Rutaceae species that causes severe fruit decay symptoms on infected citrus fruit (known as citrus green mold). The employment of fungicides can effectively control the citrus green mold, significantly reducing agricultural economic loss. In this study, we found that the X33 antifungal extract produced by Streptomyces lavendulae strain X33 inhibited the hyphae polarization of P. digitatum. Additionally, physiological and proteomic analysis strategies were applied to explore the inhibitory mechanism of the X33 antifungal extract of the S. lavendulae strain X33 on the mycelial growth of P. digitatum. A total of 277 differentially expressed proteins, consisting of 207 upregulated and 70 downregulated, were identified from the comparative proteomics analysis. The results indicated that the X33 antifungal extract induced mitochondrial membrane dysfunction and cellular integrity impairment, which can affect energy metabolism, oxidative stress, and transmembrane transport. The improved alkaline phosphatase activity and extracellular conductivity, increased H2O2 and malondialdehyde contents, and inhibition of energy, amino acid, and sugar metabolism indicated that the oxidative stress of P. digitatum is induced by the X33 antifungal extract. These findings provided insight into the antifungal mechanism of the X33 antifungal extract against P. digitatum by suggesting that it may be an effective fungicide for controlling citrus postharvest green mold.
Collapse
Affiliation(s)
- Shu-Hua Lin
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Pan Luo
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - En Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiangdong Zhu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| |
Collapse
|