1
|
Ramacciotti F, Sciutto G, Cazals L, Biagini D, Reale S, Degano I, Focarete ML, Mazzeo R, Thoury M, Bertrand L, Gualandi C, Prati S. Microporous electrospun nonwovens combined with green solvents for the selective peel-off of thin coatings from painting surfaces. J Colloid Interface Sci 2024; 663:869-879. [PMID: 38447401 DOI: 10.1016/j.jcis.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Over the last few decades, significant research efforts have been devoted to developing new cleaning systems aimed at preserving cultural heritage. One of the main objectives is to selectively remove aged or undesirable coatings from painted surfaces while preventing the cleaning solvent from permeating and engaging with the pictorial layers. In this work, we propose the use of electrospun polyamide 6,6 nonwovens in conjunction with a green solvent (dimethyl carbonate). By adjusting the electrospinning parameters, we produced three distinct nonwovens with varying average fiber diameters, ranging from 0.4 μm to 2 μm. These samples were characterized and tested for their efficacy in removing dammar varnish from painted surfaces. In particular, the cleaning process was monitored using macroscale PL (photoluminescence) imaging in real-time, while post-application examination of the mats was performed through scanning electron microscopy. The solvent evaporation rate from the different nonwovens was evaluated using gravimetric analysis and Proton Transfer Reaction- Time-of-Flight. It was observed that the application of the nonwovens with small or intermediate pore sizes for the removal of the terpenic varnish resulted in the swollen resin being absorbed into the mats, showcasing a peel-off effect. Thus, this protocol eliminates the need for further potentially detrimental removal procedures involving cotton swabs. The experimental data suggests that the peel-off effect relates to the microporosity of the mats, which enhances the capillary rise of the swollen varnish. Furthermore, the application of these systems to historical paintings underwent preliminary validation using a real painting from the 20th century.
Collapse
Affiliation(s)
- Francesca Ramacciotti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giorgia Sciutto
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Laure Cazals
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190 Gif-sur-Yvette, France
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Serena Reale
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy; INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia Bologna, Italy
| | - Rocco Mazzeo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Mathieu Thoury
- Université Paris-Saclay, CNRS, Ministère de la Culture, UVSQ, MNHN, Institut Photonique d'Analyse Non-destructive Européen des Matériaux Anciens, Saint-Aubin, 91192, France
| | - Loïc Bertrand
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190 Gif-sur-Yvette, France
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy; INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy.
| | - Silvia Prati
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
2
|
Colijn I, Postma E, Fix R, van der Kooij HM, Schroën K. Particle dispersion governs nano to bulk dynamics for tailored nanocomposite design. J Colloid Interface Sci 2024; 658:354-361. [PMID: 38113544 DOI: 10.1016/j.jcis.2023.12.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Nanoparticle addition can expand bioplastic use, as the resultant nanocomposite features e.g., improved mechanical properties. HYPOTHESIS It is generally hypothesised that the nanoparticle-polymer interaction strength is pivotal to reduce polymer dynamics within the interphasial region and beyond. EXPERIMENTS Translating nanoscale phenomena to bulk properties is challenging, as traditional techniques that probe interphasial dynamics are limited to well-dispersed systems. Laser speckle imaging (LSI) enabled us to probe interphasial nanoscale dynamics of samples containing aggregated nanoparticles. We relate these LSI-derived relaxation times to bulk rheological properties at a micro scale. FINDINGS Nanocomposites with well-dispersed PDMS-coated titanium dioxide nanoparticles of ∼100 nm showed higher viscosities than nanocomposites containing aggregated PVP- and PAA-coated nanoparticles of 200-2000 nm. Within the interphasial region, nanoparticle addition increased relaxation times by a factor 101-102, reaching ultraslow relaxations of ∼103 s. While the viscosity increased upon nanoparticle loading, interphasial relaxation times plateaued at 5 wt% for nanocomposites containing well-dispersed nanoparticles and 10 wt% for nanocomposites containing aggregated nanoparticles. Likely, interphasial regions between nanoparticles interact, which is more prominent in systems with well-dispersed nanoparticles and at higher loadings. Our results highlight that, contrary to general belief, nanoparticle dispersion seems of greater importance for mechanical reinforcement than the interaction between polymer and particle.
Collapse
Affiliation(s)
- Ivanna Colijn
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Erik Postma
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Wageningen University and Research, Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Raoul Fix
- Wageningen University and Research, Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Hanne M van der Kooij
- Wageningen University and Research, Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Karin Schroën
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
3
|
Antonelli R, Fokkink R, Sprakel J, Kodger TE. Dynamics of individual inkjet printed picoliter droplet elucidated by high speed laser speckle imaging. SOFT MATTER 2024; 20:2141-2150. [PMID: 38351843 DOI: 10.1039/d3sm01701j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Inkjet printing is a ubiquitous consumer and industrial process that involves concomitant processes of droplet impact, wetting, evaporation, and imbibement into a substrate as well as consequential substrate rearrangements and remodeling. In this work, we perform a study on the interaction between ink dispersions of different composition on substrates of increasing complexity to disentangle the motion of the liquid from the dynamic response of the substrate. We print three variations of pigmented inks and follow the ensuing dynamics at millisecond and micron time and length scales until complete drying using a multiple scattering technique, laser speckle imaging (LSI). Measurements of the photon transport mean free path, l*, for the printed inks and substrates show that the spatial region of information capture is the entire droplet volume and a depth within the substrate of a few μm beneath the droplet. Within this spatial confinement, LSI is an ideal approach for studying the solid-liquid transition at these small length and time scales by obtaining valid g2 and d2 autocorrelation functions and interpreting these dynamic changes under through kymographs. Our in situ LSI results show that droplets undergo delamination and cracking processes arising during droplet drying, which are confirmed by post mortem SEM imaging.
Collapse
Affiliation(s)
- Riccardo Antonelli
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands.
| | - Remco Fokkink
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands.
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, The Netherlands
| | - Thomas E Kodger
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Colijn I, van der Kooij HM, Schroën K. From fundamental insights to rational (bio)polymer nanocomposite design - Connecting the nanometer to meter scale. Adv Colloid Interface Sci 2024; 324:103076. [PMID: 38301315 DOI: 10.1016/j.cis.2023.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 02/03/2024]
Abstract
Nanoparticle addition has the potential to make bioplastic use mainstream, as the resultant nanocomposite shows improved mechanical, barrier, and thermal properties. It is well established that the architecture and dynamics of the nanoparticle-polymer interphasial region, ∼ 1.5-9 nm from the nanoparticle surface, are crucial for nanocomposite characteristics. Yet, how these molecular phenomena translate to the bulk is still largely unknown. A multi-disciplinary and multi-scale vision is required to capture the full picture and improve materials far beyond what is currently possible. In this review, a first step in bridging the apparent gap between fundamental insights toward observed material properties is made. At the molecular scale, the polymer chain density and dynamics at the nanoparticle surface are governed by a complex interplay between enthalpy and entropy. The resultant interphasial properties can only be propagated to the macroscopic scale effectively when the nanoparticles are well-distributed. This makes the dispersion state a key parameter for which thermodynamic and kinetic insights can be used to prevent nanoparticle aggregation. These insights are linked to material properties relevant to packaging. The outlook section elaborates on the remaining challenges and the steps required to further understand and better design nanocomposite systems.
Collapse
Affiliation(s)
- Ivanna Colijn
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Hanne M van der Kooij
- Wageningen University and Research, Physical Chemistry and Soft Matter Group, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Karin Schroën
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
5
|
Hermans J, Helwig K, Woutersen S, Keune K. Traces of water catalyze zinc soap crystallization in solvent-exposed oil paints. Phys Chem Chem Phys 2023; 25:5701-5709. [PMID: 36734512 PMCID: PMC9930726 DOI: 10.1039/d2cp04861b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The crystallization of metal soaps in polymer matrices is a complex process that affects the stability of oil paintings, as well as the properties of commercial ionomer materials. In the context of conservation of paintings, it is crucial to investigate the influence of solvent exposure on such detrimental chemical processes. Using Fourier transform infrared spectroscopy and a polymer model system that contains metastable amorphous zinc soaps, it is shown that water induces zinc soap crystallization, while solvent swelling alone has no effect. In particular fast-diffusing polar organic solvents with water impurities are able to induce extensive crystallization, delivering high concentrations of water quickly deep into paint layers. Finally, it is demonstrated, both with the model system and real oil paint samples, that even with very short solvent exposure times, significant quantities of crystalline zinc soaps are formed. This strong effect of water impurities in common solvents gives reason to be cautious when conservation treatments are being considered for oil paints that contain zinc white or other water-sensitive chemicals.
Collapse
Affiliation(s)
- Joen Hermans
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands. .,Conservation & Science, Rijksmuseum, Amsterdam, The Netherlands
| | | | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Katrien Keune
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands. .,Conservation & Science, Rijksmuseum, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Antonelli R, Fokkink R, Tomozeiu N, Sprakel J, Kodger TE. High-speed laser speckle imaging to unravel picoliter drop-on-demand to substrate interaction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:083906. [PMID: 34470387 DOI: 10.1063/5.0011167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Understanding phenomena such as evaporation and imbibition of picoliter droplets into porous substrates is crucial in printing industry to achieve a higher printing quality and print speed. After printing, the residual pigment must remain fixed at the desired location on a substrate and be of a desired volume to yield a high resolution and vibrantly printed page that has become the expectation of modern printing technology. Current research entails not only chemical composition of the ink but also how this links to the dynamics and interactions that occur between the ink and the substrate at every stage of the printed spot formation, including evaporation, wetting, and imbibition. In this paper, we present an instrument that can print on-demand picoliter volume droplets of ink onto substrates and then immediately record on evolution of the resulting dynamics when these two materials interact. This high-speed laser speckle imaging (HS-LSI) technique has been developed to monitor nanometer displacement of the drying and imbibing ink droplet at a high frame rate, up to 20000 Hz, given the short timescales of these interactions. We present the design of the instrument, discuss the related challenges and the theory underlying the LSI technique, specifically how photons non-evasively probe opaque objects in a multiple scattering regime, and show how this technique can unravel the dynamics of drying and imbibition. We will finish giving a validation on the instrument and an example of its usage.
Collapse
Affiliation(s)
- R Antonelli
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - R Fokkink
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - N Tomozeiu
- Canon Production Printing, Sint Urbanusweg 43, 5914 CA Venlo, The Netherlands
| | - J Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - T E Kodger
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
7
|
Hans M, Lugani Y, Chandel AK, Rai R, Kumar S. Production of first- and second-generation ethanol for use in alcohol-based hand sanitizers and disinfectants in India. BIOMASS CONVERSION AND BIOREFINERY 2021; 13:1-18. [PMID: 34075327 PMCID: PMC8155184 DOI: 10.1007/s13399-021-01553-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Emergence of "severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)" causing "COVID-19" or "coronavirus disease 19" as pandemic has got worldwide attention towards hygiene as the first line of defense for the infection control. It is first line of defense not only from COVID-19 but also from other infectious diseases caused by deadly pathogens such as cholera, hepatitis, tuberculosis, polio, etc. Absence of any particular vaccine or treatment let World Health Organization (WHO) recommend to the public to maintain social distancing along with regularly washing their hands with soap, sanitize their hands (where washing is not possible), and disinfect their belongings and buildings to avoid the infection. Out of various formulations available in the market, WHO has recommended alcohol-based hand sanitizers, which mainly comprise of ethanol, isopropyl alcohols, and hydrogen peroxides in different combinations due to their high potential to kill the broad range of pathogens including bacterial, viral, fungal, helminthes, etc. Therefore, alcohol-based sanitizers are in high demand since centuries to prevent infection from pathogenic diseases. Ethanol is the most common and popular alcohol in terms of vanishing wide range of pathogens, convenient to use and its production. Ethanol is produced worldwide and is used in various sectors, e.g., beauty and cosmetics, food and beverages, and as the most demanding gasoline additive. The present review is focused on the ethanol production in India, its diversified applications emphasizing hand sanitizers with discussions on formulation of sanitizer and disinfectants, and viability of lignocellulosic and food grain-based ethanol. The review article also emphasizes on the technological details of 1G and 2G ethanol production, their associated challenges, and inputs for the improved ethanol yields so as to strengthen the supply chain of ethanol in India, and making "Atmanirbhar Bharat" (Self-reliant India) campaign of Indian government successfully viable.
Collapse
Affiliation(s)
- Meenu Hans
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Jalandhar-Kapurthala Road, Wadala Kalan, Kapurthala, Punjab 144601 India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Yogita Lugani
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana 131028 India
| | - Anuj K. Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, SP Brazil
| | - Rohit Rai
- Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Jalandhar-Kapurthala Road, Wadala Kalan, Kapurthala, Punjab 144601 India
| |
Collapse
|
8
|
Biologically Derived Gels for the Cleaning of Historical and Artistic Metal Heritage. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083405] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the general global rise of attention and research to seek greener attitudes, the field of cultural heritage (CH) makes no exception. In the last decades, an increasing number of sustainable and biologically based solutions have been proposed for the protection and care of artworks. Additionally, the safety of the target artwork and the operator must be kept as core goals. Within this scenario, new products and treatments should be explored and implemented in the common conservation praxes. Therefore, this review addressing metal heritage is aimed to report biologically derived gel formulations already proposed for this specific area as reliable tools for cleaning. Promising bio-gel-based protocols, still to be implemented in metal conservation, are also presented to promote their investigation by stakeholders in metal conservation. After an opening overview on the common practices for cleaning metallic surfaces in CH, the focus will be moved onto the potentialities of gel-alternatives and in particular of ones with a biological origin. In more detail, we displayed water-gels (i.e., hydrogels) and solvent-gels (i.e., organogels) together with particular attention to bio-solvents. The discussion is closed in light of the state-of-the-art and future perspectives.
Collapse
|
9
|
A Portable Compact System for Laser Speckle Correlation Imaging of Artworks Using Projected Speckle Pattern. J Imaging 2020; 6:jimaging6110119. [PMID: 34460563 PMCID: PMC8321176 DOI: 10.3390/jimaging6110119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
Artworks have a layered structure subjected to alterations caused by various factors. The monitoring of defects at sub-millimeter scale may be performed by laser interferometric techniques. The aim of this work was to develop a compact system to perform laser speckle imaging in situ for effective mapping of subsurface defects in paintings. The device was designed to be versatile with the possibility of optimizing the performance by easy parameters adjustment. The system exploits a laser speckle pattern generated through an optical diffuser and projected onto the artworks and image correlation techniques for the analysis of the speckle intensity pattern. A protocol for the optimal measurement was suggested, based on calibration curves for tuning the mean speckle size in the acquired intensity pattern. The system was validated in the analysis of detachments in an ancient painting model using a short pulse thermal stimulus to induce a surface deformation field and standard decorrelation algorithms for speckle pattern matching. The device is equipped with a compact thermal camera for preventing any overheating effects during the phase of the stimulus. The developed system represents a valuable nondestructive tool for artwork diagnostics, allowing the monitoring of subsurface defects in paintings in out-of-laboratory environment.
Collapse
|