1
|
Niyo G, Almofeez LI, Erwin A, Valero-Cuevas FJ. A computational study of how an α- to γ-motoneurone collateral can mitigate velocity-dependent stretch reflexes during voluntary movement. Proc Natl Acad Sci U S A 2024; 121:e2321659121. [PMID: 39116178 PMCID: PMC11348295 DOI: 10.1073/pnas.2321659121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The primary motor cortex does not uniquely or directly produce alpha motoneurone (α-MN) drive to muscles during voluntary movement. Rather, α-MN drive emerges from the synthesis and competition among excitatory and inhibitory inputs from multiple descending tracts, spinal interneurons, sensory inputs, and proprioceptive afferents. One such fundamental input is velocity-dependent stretch reflexes in lengthening muscles, which should be inhibited to enable voluntary movement. It remains an open question, however, the extent to which unmodulated stretch reflexes disrupt voluntary movement, and whether and how they are inhibited in limbs with numerous multiarticular muscles. We used a computational model of a Rhesus Macaque arm to simulate movements with feedforward α-MN commands only, and with added velocity-dependent stretch reflex feedback. We found that velocity-dependent stretch reflex caused movement-specific, typically large and variable disruptions to arm movements. These disruptions were greatly reduced when modulating velocity-dependent stretch reflex feedback (i) as per the commonly proposed (but yet to be clarified) idealized alpha-gamma (α-γ) coactivation or (ii) an alternative α-MN collateral projection to homonymous γ-MNs. We conclude that such α-MN collaterals are a physiologically tenable propriospinal circuit in the mammalian fusimotor system. These collaterals could still collaborate with α-γ coactivation, and the few skeletofusimotor fibers (β-MNs) in mammals, to create a flexible fusimotor ecosystem to enable voluntary movement. By locally and automatically regulating the highly nonlinear neuro-musculo-skeletal mechanics of the limb, these collaterals could be a critical low-level enabler of learning, adaptation, and performance via higher-level brainstem, cerebellar, and cortical mechanisms.
Collapse
Affiliation(s)
- Grace Niyo
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA90089
| | - Lama I. Almofeez
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA90089
| | - Andrew Erwin
- Biokinesiology and Physical Therapy Department, University of Southern California, Los Angeles, CA90033
- Mechanical and Materials Engineering Department, University of Cincinnati, Cincinnati, OH45221
| | - Francisco J. Valero-Cuevas
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA90089
- Biokinesiology and Physical Therapy Department, University of Southern California, Los Angeles, CA90033
| |
Collapse
|
2
|
Niyo G, Almofeez LI, Erwin A, Valero-Cuevas FJ. An alpha- to gamma-motoneurone collateral can mitigate velocity-dependent stretch reflexes during voluntary movement: A computational study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570843. [PMID: 38106121 PMCID: PMC10723443 DOI: 10.1101/2023.12.08.570843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The primary motor cortex does not uniquely or directly produce alpha motoneurone (α-MN) drive to muscles during voluntary movement. Rather, α-MN drive emerges from the synthesis and competition among excitatory and inhibitory inputs from multiple descending tracts, spinal interneurons, sensory inputs, and proprioceptive afferents. One such fundamental input is velocity-dependent stretch reflexes in lengthening muscles, which should be inhibited to enable voluntary movement. It remains an open question, however, the extent to which unmodulated stretch reflexes disrupt voluntary movement, and whether and how they are inhibited in limbs with numerous multi-articular muscles. We used a computational model of a Rhesus Macaque arm to simulate movements with feedforward α-MN commands only, and with added velocity-dependent stretch reflex feedback. We found that velocity-dependent stretch reflex caused movement-specific, typically large and variable disruptions to arm movements. These disruptions were greatly reduced when modulating velocity-dependent stretch reflex feedback (i) as per the commonly proposed (but yet to be clarified) idealized alpha-gamma (α-γ) co-activation or (ii) an alternative α-MN collateral projection to homonymous γ-MNs. We conclude that such α-MN collaterals are a physiologically tenable, but previously unrecognized, propriospinal circuit in the mammalian fusimotor system. These collaterals could still collaborate with α-γ co-activation, and the few skeletofusimotor fibers (β-MNs) in mammals, to create a flexible fusimotor ecosystem to enable voluntary movement. By locally and automatically regulating the highly nonlinear neuro-musculo-skeletal mechanics of the limb, these collaterals could be a critical low-level enabler of learning, adaptation, and performance via higher-level brainstem, cerebellar and cortical mechanisms.
Collapse
Affiliation(s)
- Grace Niyo
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, USA
| | - Lama I Almofeez
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, USA
| | - Andrew Erwin
- Biokinesiology and Physical Therapy Department, University of Southern California, Los Angeles, CA, USA
- Mechanical and Materials Engineering Department, University of Cincinnati, Cincinnati, OH, USA
| | - Francisco J Valero-Cuevas
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, USA
- Biokinesiology and Physical Therapy Department, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
O'Reilly D, Delis I. Dissecting muscle synergies in the task space. eLife 2024; 12:RP87651. [PMID: 38407224 PMCID: PMC10942626 DOI: 10.7554/elife.87651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
The muscle synergy is a guiding concept in motor control research that relies on the general notion of muscles 'working together' towards task performance. However, although the synergy concept has provided valuable insights into motor coordination, muscle interactions have not been fully characterised with respect to task performance. Here, we address this research gap by proposing a novel perspective to the muscle synergy that assigns specific functional roles to muscle couplings by characterising their task-relevance. Our novel perspective provides nuance to the muscle synergy concept, demonstrating how muscular interactions can 'work together' in different ways: (1) irrespective of the task at hand but also (2) redundantly or (3) complementarily towards common task-goals. To establish this perspective, we leverage information- and network-theory and dimensionality reduction methods to include discrete and continuous task parameters directly during muscle synergy extraction. Specifically, we introduce co-information as a measure of the task-relevance of muscle interactions and use it to categorise such interactions as task-irrelevant (present across tasks), redundant (shared task information), or synergistic (different task information). To demonstrate these types of interactions in real data, we firstly apply the framework in a simple way, revealing its added functional and physiological relevance with respect to current approaches. We then apply the framework to large-scale datasets and extract generalizable and scale-invariant representations consisting of subnetworks of synchronised muscle couplings and distinct temporal patterns. The representations effectively capture the functional interplay between task end-goals and biomechanical affordances and the concurrent processing of functionally similar and complementary task information. The proposed framework unifies the capabilities of current approaches in capturing distinct motor features while providing novel insights and research opportunities through a nuanced perspective to the muscle synergy.
Collapse
Affiliation(s)
- David O'Reilly
- School of Biomedical Sciences, University of LeedsLeedsUnited Kingdom
| | - Ioannis Delis
- School of Biomedical Sciences, University of LeedsLeedsUnited Kingdom
| |
Collapse
|
4
|
Hardesty RL, Ellaway PH, Gritsenko V. The human motor cortex contributes to gravity compensation to maintain posture and during reaching. J Neurophysiol 2023; 129:83-101. [PMID: 36448705 PMCID: PMC9799140 DOI: 10.1152/jn.00367.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
The neural control of posture and movement is interdependent. During voluntary movement, the neural motor command is executed by the motor cortex through the corticospinal tract and its collaterals and subcortical targets. Here we address the question of whether the control mechanism for the postural adjustments at nonmoving joints is also involved in overcoming gravity at the moving joints. We used single-pulse transcranial magnetic stimulation to measure the corticospinal excitability in humans during postural and reaching tasks. We hypothesized that the corticospinal excitability is proportional to background muscle activity and the gravity-related joint moments during both static postures and reaching movements. To test this hypothesis, we used visual targets in virtual reality to instruct five postures and three movements with or against gravity. We then measured the amplitude and gain of motor evoked potentials in multiple arm and hand muscles at several phases of the reaching motion and during static postures. The stimulation caused motor evoked potentials in all muscles that were proportional to the muscle activity. During both static postures and reaching movements, the muscle activity and the corticospinal contribution to these muscles changed in proportion with the postural moments needed to support the arm against gravity, supporting the hypothesis. Notably, these changes happened not only in antigravity muscles. Altogether, these results provide evidence that the changes in corticospinal excitability cause muscle cocontraction that modulates limb stiffness. This suggests that the motor cortex is involved in producing postural adjustments that support the arm against gravity during posture maintenance and reaching.NEW & NOTEWORTHY Animal studies suggest that the corticospinal tract and its collaterals are crucial for producing postural adjustments that accompany movement in limbs other than the moving limb. Here we provide evidence for a similar control schema for both arm posture maintenance and gravity compensation during movement of the same limb. The observed interplay between the postural and movement control signals within the corticospinal tract may help explain the underlying neural motor deficits after stroke.
Collapse
Affiliation(s)
- Russell L Hardesty
- Departments of Human Performance and Neuroscience, Rockefeller Neuroscience Center, West Virginia University, Morgantown, West Virginia
| | - Peter H Ellaway
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Valeriya Gritsenko
- Departments of Human Performance and Neuroscience, Rockefeller Neuroscience Center, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
5
|
Piotrkiewicz M. The role of computer simulations in the investigation of mechanisms underlying rhythmic firing of human motoneuron. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Dideriksen J, Negro F. Feedforward modulation of gamma motor neuron activity can improve motor command accuracy. J Neural Eng 2021; 18. [PMID: 34036939 DOI: 10.1088/1741-2552/ac019f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/14/2021] [Indexed: 11/12/2022]
Abstract
Objective. Coactivation of gamma and alpha motor neuron activity ensures that muscle spindle responsiveness is maintained during muscle contractions. However, some evidence suggests that the activity of gamma motor neurons is phase-advanced with respect to that of alpha motor neurons during manual control tasks. We hypothesized that this might be a deliberate control strategy to maximize movement accuracy.Approach. Using a computational model of the neural activation of a muscle and its type Ia sensory feedback to the motor neurons, we systematically investigated the impact of the phase difference between oscillatory descending input to alpha and dynamic gamma motor neurons. Specifically, the amplification of the alpha motor neuron drive to the muscle was investigated as a function of the frequency of the synaptic input (1-9 Hz individually or superimposed) and the alpha-gamma phase difference (0-2π).Main results. Simulation results showed that when the phase advance of the dynamic gamma drive resulted in delays between muscle velocity and type Ia afferent feedback similar to those previously observed experimentally, low-frequency components (1 and 2 Hz) of the motor neuron synaptic input were amplified (gain up to 1.7). On the other hand, synaptic input at higher frequencies was unaffected.Significance. This finding suggests that by imposing a phase advance of the input to dynamic gamma motor neurons, components of the neural drive usually associated with voluntary control are amplified. In this way, our study suggests that this neural strategy increases the control-to-neural-noise ratio of the motor output during movement.
Collapse
Affiliation(s)
- Jakob Dideriksen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
7
|
A Conceptual Blueprint for Making Neuromusculoskeletal Models Clinically Useful. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052037] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of most neuromusculoskeletal modeling research is to improve the treatment of movement impairments. However, even though neuromusculoskeletal models have become more realistic anatomically, physiologically, and neurologically over the past 25 years, they have yet to make a positive impact on the design of clinical treatments for movement impairments. Such impairments are caused by common conditions such as stroke, osteoarthritis, Parkinson’s disease, spinal cord injury, cerebral palsy, limb amputation, and even cancer. The lack of clinical impact is somewhat surprising given that comparable computational technology has transformed the design of airplanes, automobiles, and other commercial products over the same time period. This paper provides the author’s personal perspective for how neuromusculoskeletal models can become clinically useful. First, the paper motivates the potential value of neuromusculoskeletal models for clinical treatment design. Next, it highlights five challenges to achieving clinical utility and provides suggestions for how to overcome them. After that, it describes clinical, technical, collaboration, and practical needs that must be addressed for neuromusculoskeletal models to fulfill their clinical potential, along with recommendations for meeting them. Finally, it discusses how more complex modeling and experimental methods could enhance neuromusculoskeletal model fidelity, personalization, and utilization. The author hopes that these ideas will provide a conceptual blueprint that will help the neuromusculoskeletal modeling research community work toward clinical utility.
Collapse
|
8
|
Abstract
The muscle spindle is an important sense organ for motor control and proprioception. Specialized intrafusal fibers are innervated by both stretch sensitive afferents and γ motor neurons that control the length of the spindle and tune the sensitivity of the muscle spindle afferents to both dynamic movement and static length. γ motor neurons share many similarities with other skeletal motor neurons, making it challenging to identify and specifically record or stimulate them. This short review will discuss recent advances in genetic and molecular biology techniques, electrophysiological recording, optical imaging, computer modelling, and stem cell culture techniques that have the potential to help answer important questions about fusimotor function in motor control and disease.
Collapse
|