1
|
Yi Z, Jeyakumar P, Yin C, Sun H. Effects of biochar in combination with varied N inputs on grain yield, N uptake, NH 3 volatilization, and N 2O emission in paddy soil. Front Microbiol 2023; 14:1174805. [PMID: 37250021 PMCID: PMC10214156 DOI: 10.3389/fmicb.2023.1174805] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Biochar application can improve crop yield, reduce ammonia (NH3) volatilization and nitrous oxide (N2O) emission from farmland. We here conducted a pot experiment to compare the effects of biochar application on rice yield, nitrogen (N) uptake, NH3 and N2O losses in paddy soil with low, medium, and high N inputs at 160 kg/ha, 200 kg/ha and 240 kg/ha, respectively. The results showed that: (1) Biochar significantly increased the rice grain yield at medium (200 kg/ha) and high (240 kg/ha) N inputs by 56.4 and 70.5%, respectively. The way to increase yield was to increase the rice N uptake, rice panicle number per pot and 1,000 grain weight by 78.5-96.5%, 6-16% and 4.4-6.1%, respectively; (2) Under low (160 kg/ha) N input, adding biochar effectively reduced the NH3 volatilization by 31.6% in rice season. The decreases of pH value and NH4+-N content in surface water, and the increases of the abundance of NH4+-N oxidizing archaea and bacteria (AOA and AOB) communities contributed to the reduction of NH3 volatilization following the biochar application; (3) Under same N input levels, the total N2O emission in rice season decreased by 43.3-73.9% after biochar addition. The decreases of nirK and nirS gene abundances but the increases of nosZ gene abundance are the main mechanisms for biochar application to reduce N2O emissions. Based on the results of the current study, adding biochar at medium (200 kg/ha) N level (N200 + BC) is the best treatment to synchronically reduce NH3 and N2O losses, improve grain yield, and reduce fertilizer application in rice production system.
Collapse
Affiliation(s)
- Zhenghua Yi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Chengcheng Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Alam MS, Khanam M, Rahman MM. Environment-friendly nitrogen management practices in wetland paddy cultivation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1020570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
A large amount of nitrogen (N) fertilizer is required for paddy cultivation, but nitrogen use efficiency (NUE) in paddy farming is low (20–40%). Much of the unutilized N potentially degrades the quality of soil, water, and air and disintegrates the functions of different ecosystems. It is a great challenge to increase NUE and sustain rice production to meet the food demand of the growing population. This review attempted to find out promising N management practices that might increase NUE while reducing the trade-off between rice production and environmental pollution. We collected and collated information on N management practices and associated barriers. A set of existing soil, crop, and fertilizer management strategies can be suggested for increasing NUE, which, however, might not be capable to halve N waste by 2030 as stated in the “Colombo Declaration” by the United Nations Environment Program. Therefore, more efficient N management tools are yet to be developed through research and extension. Awareness-raising campaign among farmers is a must against their misunderstanding that higher N fertilizer provides higher yields. The findings might help policymakers to formulate suitable policies regarding eco-friendly N management strategies for wetland paddy cultivation and ensure better utilization of costly N fertilizer.
Collapse
|
3
|
Management Strategies to Mitigate N2O Emissions in Agriculture. Life (Basel) 2022; 12:life12030439. [PMID: 35330190 PMCID: PMC8949344 DOI: 10.3390/life12030439] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
The concentration of greenhouse gases (GHGs) in the atmosphere has been increasing since the beginning of the industrial revolution. Nitrous oxide (N2O) is one of the mightiest GHGs, and agriculture is one of the main sources of N2O emissions. In this paper, we reviewed the mechanisms triggering N2O emissions and the role of agricultural practices in their mitigation. The amount of N2O produced from the soil through the combined processes of nitrification and denitrification is profoundly influenced by temperature, moisture, carbon, nitrogen and oxygen contents. These factors can be manipulated to a significant extent through field management practices, influencing N2O emission. The relationships between N2O occurrence and factors regulating it are an important premise for devising mitigation strategies. Here, we evaluated various options in the literature and found that N2O emissions can be effectively reduced by intervening on time and through the method of N supply (30–40%, with peaks up to 80%), tillage and irrigation practices (both in non-univocal way), use of amendments, such as biochar and lime (up to 80%), use of slow-release fertilizers and/or nitrification inhibitors (up to 50%), plant treatment with arbuscular mycorrhizal fungi (up to 75%), appropriate crop rotations and schemes (up to 50%), and integrated nutrient management (in a non-univocal way). In conclusion, acting on N supply (fertilizer type, dose, time, method, etc.) is the most straightforward way to achieve significant N2O reductions without compromising crop yields. However, tuning the rest of crop management (tillage, irrigation, rotation, etc.) to principles of good agricultural practices is also advisable, as it can fetch significant N2O abatement vs. the risk of unexpected rise, which can be incurred by unwary management.
Collapse
|
4
|
Nan Q, Fang C, Cheng L, Hao W, Wu W. Elevation of NO 3--N from biochar amendment facilitates mitigating paddy CH 4 emission stably over seven years. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118707. [PMID: 34923062 DOI: 10.1016/j.envpol.2021.118707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Biochar application into paddy is an improved strategy for addressing methane (CH4) stimulation of straw biomass incorporation. Whereas, the differentiative patterns and mechanisms on CH4 emission of straw biomass and biochar after long years still need to be disentangled. Considering economic feasibility, a seven-year of field experiment was conducted to explore the long-term CH4 mitigation effect of annual low-rate biochar incorporation (RSC, 2.8 t ha-1), with annual rice straw incorporation (RS, 8 t ha-1) and control (CK, with no biochar or rice straw amendment incorporation) as a comparation. Results showed that RSC mitigated CH4 emission while RS stimulated CH4 significantly (p < 0.05) and stably over 7 experimental years compared with CK. RSC mitigated 14.8-46.7% of CH4 emission compared with CK. In comparison to RSC, RS increased 111-950.5% of CH4 emission during 7 field experimental years. On the 7th field experimental year, pH was significantly increased both in RS and RSC treatment (p < 0.05). RSC significantly (p < 0.05) increased soil nitrate (NO3--N) compared with RS while RS significantly (p < 0.05) increased dissolved carbon (DOC) compared to RSC. Soil NO3--N inhibition on methanogens and promotion on methanotrophs activities were verified by laboratory experiment, while soil pH and DOC mainly promoted methanogens abundance. Significantly (p < 0.05) increased DOC and soil pH enhanced methanogens growth and stimulated CH4 emission in RS treatment. Higher soil NO3--N content in RSC than CK and RS contributed to CH4 mitigation. Soil NO3--N and DOC were identified as the key factors differentiating CH4 emission patterns of RS and RSC in 2019. Collectively, soil NO3--N impacts on CH4 flux provide new ideas for prolonged effect of biochar amendment on CH4 mitigation after years.
Collapse
Affiliation(s)
- Qiong Nan
- Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou, 310029, PR China
| | - Chenxuan Fang
- Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou, 310029, PR China
| | - Linqi Cheng
- Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou, 310029, PR China
| | - Wang Hao
- Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou, 310029, PR China
| | - Weixiang Wu
- Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou, 310029, PR China.
| |
Collapse
|
5
|
Wang A, Zou D, Zeng X, Chen B, Zheng X, Li L, Zhang L, Xiao Z, Wang H. Speciation and environmental risk of heavy metals in biochars produced by pyrolysis of chicken manure and water-washed swine manure. Sci Rep 2021; 11:11994. [PMID: 34099807 PMCID: PMC8185107 DOI: 10.1038/s41598-021-91440-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
This study was conducted to investigate the speciation, bioavailability and environmental risk of heavy metals (HMs) in chicken manure (CM) and water-washed swine manure (WSM) and their biochars produced at different pyrolysis temperatures (200 to 800 °C). As the pyrolysis temperature increased, the remaining proportion, toxicity characteristic leaching procedure (TCLP), HCl and diethylenetriamine pentaacetic acid (DTPA) of HMs gradually declined. This result proved that the speciation of HMs in chicken manure biochars (CMB) and water-washed swine manure biochars (WSMB) was influenced by pyrolysis temperature. The proportions of stable fractions were enhanced with increased pyrolysis temperature and weakened the HM validity for vegetation at 800 °C. Finally, the results of the risk assessment showed that the environmental risk of HMs in CMB and WSMB decreased with increasing pyrolysis temperature. Therefore, pyrolysis at 800 °C can provide a practical approach to lessen the initial and underlying heavy metal toxicity of CMB and WSMB to the environment.
Collapse
Affiliation(s)
- Andong Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Xinyi Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Bin Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Xiaochen Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Longcheng Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Liqing Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| | - Hua Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| |
Collapse
|