1
|
Noel OF, Dumbrava MG, Daoud D, Kammien AJ, Kauke-Navarro M, Pomahac B, Colen D. Vascularized Composite Allograft Versus Prosthetic for Reconstruction After Facial and Hand Trauma: Comparing Cost, Complications, and Long-term Outcome. Ann Plast Surg 2024; 92:100-105. [PMID: 37962243 DOI: 10.1097/sap.0000000000003731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
ABSTRACT In the past decade, vascularized composite allotransplantation (VCA) has become clinical reality for reconstruction after face and hand trauma. It offers patients the unique opportunity to regain form and function in a way that had only been achieved with traditional reconstruction or with the use of prostheses. On the other hand, prostheses for facial and hand reconstruction have continued to evolve over the years and, in many cases, represent the primary option for patients after hand and face trauma. We compared the cost, associated complications, and long-term outcomes of VCA with prostheses for reconstruction of the face and hand/upper extremity. Ultimately, VCA and prostheses represent 2 different reconstructive options with distinct benefit profiles and associated limitations and should ideally not be perceived as competing choices. Our work adds a valuable component to the general framework guiding the decision to offer VCA or prostheses for reconstruction after face and upper extremity trauma.
Collapse
Affiliation(s)
- Olivier F Noel
- From the Division of Plastic and Reconstructive Surgery, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT
| | | | - Deborah Daoud
- Department of Surgery, Rutgers New Jersey Medical School, Newark, NJ
| | - Alexander J Kammien
- From the Division of Plastic and Reconstructive Surgery, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT
| | - Martin Kauke-Navarro
- From the Division of Plastic and Reconstructive Surgery, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT
| | - Bohdan Pomahac
- From the Division of Plastic and Reconstructive Surgery, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT
| | - David Colen
- From the Division of Plastic and Reconstructive Surgery, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT
| |
Collapse
|
2
|
Liu Y, Wang S, Yang J, Wang D, Li Y, Lin L. Application of 3D printing in ear reconstruction with autogenous costal cartilage: A systematic review. Int J Pediatr Otorhinolaryngol 2024; 176:111817. [PMID: 38071836 DOI: 10.1016/j.ijporl.2023.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE In recent years, 3D printing technology has been employed as a production method that builds materials layer upon layer, providing notable advantages in terms of individual customization and production efficiency. Autologous costal cartilage ear reconstruction has seen substantial changes due to 3D printing technology. In this context, this research evaluated the prospects and applications of 3D printing in ear reconstruction education, preoperative planning and simulation, the production of intraoperative guide plates, and other related areas. METHODOLOGY All articles eligible for consideration were sourced through a comprehensive search of PubMed, the Cochrane Library, EMBASE, and Web of Science from inception to May 22, 2023. Two reviewers extracted data on the manufacturing process and interventions. The Cochrane risk of bias tool and Newcastle-Ottawa scale were used to assess the quality of the research. Database searching yielded 283 records, of which 24 articles were selected for qualitative analysis. RESULTS The utilization of 3D printing is becoming increasingly widespread in autogenous costal cartilage ear reconstruction, from education to the application of preoperative design and intraoperative guide plates production, possessing a substantial influence on surgical training, the enhancement of surgical effects, complications reduction, and so forth. CONCLUSION This study sought to determine the application value and further development potential of 3D printing in autologous costal cartilage ear reconstruction. However, there is a lack of conclusive evidence on its effectiveness when compared to conventional strategies because of the limited number of cohort studies and randomized controlled trials. Simultaneously, the evaluation of the effect lacks objective and quantitative evaluation criteria, with most of them being emotional sentiments and ratings, making it difficult to execute a quantitative synthetic analysis. It is hoped that more large-scale comparative studies will be undertaken, and an objective and standard effect evaluation system will be implemented in the future.
Collapse
Affiliation(s)
- Yicheng Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Senmao Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Jingwen Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Di Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Yifei Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Lin Lin
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
3
|
Wersényi G, Scheper V, Spagnol S, Eixelberger T, Wittenberg T. Cost-effective 3D scanning and printing technologies for outer ear reconstruction: current status. Head Face Med 2023; 19:46. [PMID: 37891625 PMCID: PMC10612312 DOI: 10.1186/s13005-023-00394-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Current 3D scanning and printing technologies offer not only state-of-the-art developments in the field of medical imaging and bio-engineering, but also cost and time effective solutions for surgical reconstruction procedures. Besides tissue engineering, where living cells are used, bio-compatible polymers or synthetic resin can be applied. The combination of 3D handheld scanning devices or volumetric imaging, (open-source) image processing packages, and 3D printers form a complete workflow chain that is capable of effective rapid prototyping of outer ear replicas. This paper reviews current possibilities and latest use cases for 3D-scanning, data processing and printing of outer ear replicas with a focus on low-cost solutions for rehabilitation engineering.
Collapse
Affiliation(s)
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Hannover, D-30625, Germany
| | | | - Thomas Eixelberger
- Friedrich-Alexander-University Erlangen-Nuremberg & Fraunhofer Institute for Integrated Circuits IIS, Erlangen, D-91058, Germany
| | - Thomas Wittenberg
- Friedrich-Alexander-University Erlangen-Nuremberg & Fraunhofer Institute for Integrated Circuits IIS, Erlangen, D-91058, Germany
| |
Collapse
|
4
|
Cruz RLJ, Ross MT, Nightingale R, Pickering E, Allenby MC, Woodruff MA, Powell SK. An automated parametric ear model to improve frugal 3D scanning methods for the advanced manufacturing of high-quality prosthetic ears. Comput Biol Med 2023; 162:107033. [PMID: 37271110 DOI: 10.1016/j.compbiomed.2023.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/17/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
Ear prostheses are commonly used for restoring aesthetics to those suffering missing or malformed external ears. Traditional fabrication of these prostheses is labour intensive and requires expert skill from a prosthetist. Advanced manufacturing including 3D scanning, modelling and 3D printing has the potential to improve this process, although more work is required before it is ready for routine clinical use. In this paper, we introduce a parametric modelling technique capable of producing high quality 3D models of the human ear from low-fidelity, frugal, patient scans; significantly reducing time, complexity and cost. Our ear model can be tuned to fit the frugal low-fidelity 3D scan through; (a) manual tuning, or (b) our automated particle filter approach. This potentially enables low-cost smartphone photogrammetry-based 3D scanning for high quality personalised 3D printed ear prosthesis. In comparison to standard photogrammetry, our parametric model improves completeness, from (81 ± 5)% to (87 ± 4)%, with only a modest reduction in accuracy, with root mean square error (RMSE) increasing from (1.0 ± 0.2) mm to (1.5 ± 0.2) mm (relative to metrology rated reference 3D scans, n = 14). Despite this reduction in the RMS accuracy, our parametric model improves the overall quality, realism, and smoothness. Our automated particle filter method differs only modestly compared to manual adjustments. Overall, our parametric ear model can significantly improve quality, smoothness and completeness of 3D models produced from 30-photograph photogrammetry. This enables frugal high-quality 3D ear models to be produced for use in the advanced manufacturing of ear prostheses.
Collapse
Affiliation(s)
- Rena L J Cruz
- QUT Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Maureen T Ross
- QUT Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Renee Nightingale
- QUT Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Edmund Pickering
- QUT Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Mark C Allenby
- QUT Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Maria A Woodruff
- QUT Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Sean K Powell
- QUT Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Qld, Australia.
| |
Collapse
|
5
|
Aguirre-Aguirre D, Gonzalez-Utrera D, Villalobos-Mendoza B, Díaz-Uribe R. Fabrication of biconvex spherical and aspherical lenses using 3D printing. APPLIED OPTICS 2023; 62:C14-C20. [PMID: 37133051 DOI: 10.1364/ao.477347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this work, we present the methods of fabrication and characterization of biconvex spherical and aspherical lenses with 25 and 50 mm diameters that have been created via additive technology using a Formlabs Form 3 stereolithography 3D printer. After the prototypes are postprocessed, fabrication errors ≤2.47% for the radius of curvature, the optical power, and the focal length are obtained. We show eye fundus images captured with an indirect ophthalmoscope using the printed biconvex aspherical prototypes, proving the functionality of both the fabricated lenses and the proposed method, which is fast and low-cost.
Collapse
|
6
|
Gupta V, Gupta S, Chanda A. Development of an ultra-low-cost planar biaxial tester for soft tissue characterization. Biomed Phys Eng Express 2023; 9. [PMID: 36745909 DOI: 10.1088/2057-1976/acb940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Nowadays, the research in the arena of biomedical engineering or specifically soft tissue characterization is rapidly increasing. Due to the complex properties of soft tissues such as, anisotropy and viscoelasticity, it is difficult to predict the deformation behaviour. Hence, soft tissue characterization is essential to analyze these metrics. Soft tissue characterization, specifically, can be done by implementing a planar biaxial tester. Currently, available biaxial testers are mostly developed with respect to other mechanical components such as metals, and not for the soft tissues. Also, these devices are very costly, which makes it difficult for the low and middle income countries to perform this characterization. To solve this problem, in this work, an extremely low-cost biaxial tester was designed and developed. The design of the biaxial tester was simple and modular to allow device modifications according to the applications. The device has a force capability of less than 0.4 kN and a variable speed of 18 mm min-1to 300 mm min-1. The biaxial tester was validated using a standard test material with mechanical testing machine and was further tested on several wound geometries including circular, square, diamond shaped, L-Plasty, and elliptical. The developed fully automated device exhibited high accuracy with real-time monitoring. Furthermore, test results on the wounds showed the device's capability to differentiate amongst the considered wound geometries. This device can be helpful to medical students and doctors in understanding the mechanical behaviour of soft tissues during injury induced damage, disease, wounds healing and also for plethora of applications such as expansion testing of skin grafts.
Collapse
Affiliation(s)
- Vivek Gupta
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
| | - Shubham Gupta
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
| | - Arnab Chanda
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India.,Department of Biomedical Engineering, All India Institute of Medical Sciences (AIIMS), Delhi, India
| |
Collapse
|
7
|
Ross MT, Antico M, McMahon KL, Ren J, Powell SK, Pandey AK, Allenby MC, Fontanarosa D, Woodruff MA. Ultrasound Imaging Offers Promising Alternative to Create 3-D Models for Personalised Auricular Implants. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:450-459. [PMID: 34848081 DOI: 10.1016/j.ultrasmedbio.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Three-dimensional imaging and advanced manufacturing are being applied in health care research to create novel diagnostic and surgical planning methods, as well as personalised treatments and implants. For ear reconstruction, where a cartilage-shaped implant is embedded underneath the skin to re-create shape and form, volumetric imaging and segmentation processing to capture patient anatomy are particularly challenging. Here, we introduce 3-D ultrasound (US) as an available option for imaging the external ear and underlying auricular cartilage structure, and compare it with computed tomography (CT) and magnetic resonance imaging (MRI) against micro-CT (µCT) as a high-resolution reference (gold standard). US images were segmented to create 3-D models of the auricular cartilage and compared against models generated from µCT to assess accuracy. We found that CT was significantly less accurate than the other methods (root mean square [RMS]: 1.30 ± 0.5 mm) and had the least contrast between tissues. There was no significant difference between MRI (RMS: 0.69 ± 0.2 mm) and US (0.55 ± 0.1 mm). US was also the least expensive imaging method at half the cost of MRI. These results unveil a novel use of ultrasound imaging that has not been presented before, as well as support its more widespread use in biofabrication as a low-cost imaging technique to create patient-specific 3D models and implants.
Collapse
Affiliation(s)
- Maureen T Ross
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Maria Antico
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Katie L McMahon
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia; Herston Imaging Research Facility, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Jiongyu Ren
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Sean K Powell
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Ajay K Pandey
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Mark C Allenby
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Davide Fontanarosa
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia; School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Maria A Woodruff
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
| |
Collapse
|
8
|
Paxton NC, Nightingale RC, Woodruff MA. Capturing patient anatomy for designing and manufacturing personalized prostheses. Curr Opin Biotechnol 2021; 73:282-289. [PMID: 34601260 DOI: 10.1016/j.copbio.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 11/03/2022]
Abstract
Prostheses play a critical role in healthcare provision for many patients and encompass aesthetic facial prostheses, prosthetic limbs and prosthetic joints, bones, and other implantable medical devices in musculoskeletal surgery. An increasingly important component in cutting-edge healthcare treatments is the ability to accurately capture patient anatomy in order to guide the manufacture of personalized prostheses. This article examines methods for capturing patient anatomy and discusses the degrees of personalization in medical manufacturing alongside a summary of current trends in scanning technology with a focus on identifying workflows for incorporating personalization into patient-specific products. Over the next decade, with increased harmonization of both personalization and automated prosthetic manufacturing will be the realization of improved patient compliance, satisfaction, and clinical outcomes.
Collapse
Affiliation(s)
- Naomi C Paxton
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Renee C Nightingale
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Maria A Woodruff
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
9
|
Digital Workflow in Maxillofacial Prosthodontics—An Update on Defect Data Acquisition, Editing and Design Using Open-Source and Commercial Available Software. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030973] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: A maxillofacial prosthesis, an alternative to surgery for the rehabilitation of patients with facial disabilities (congenital or acquired due to malignant disease or trauma), are meant to replace parts of the face or missing areas of bone and soft tissue and restore oral functions such as swallowing, speech and chewing, with the main goal being to improve the quality of life of the patients. The conventional procedures for maxillofacial prosthesis manufacturing involve several complex steps, are very traumatic for the patient and rely on the skills of the maxillofacial team. Computer-aided design and computer-aided manufacturing have opened a new approach to the fabrication of maxillofacial prostheses. Our review aimed to perform an update on the digital design of a maxillofacial prosthesis, emphasizing the available methods of data acquisition for the extraoral, intraoral and complex defects in the maxillofacial region and assessing the software used for data processing and part design. Methods: A search in the PubMed and Scopus databases was done using the predefined MeSH terms. Results: Partially and complete digital workflows were successfully applied for extraoral and intraoral prosthesis manufacturing. Conclusions: To date, the software and interface used to process and design maxillofacial prostheses are expensive, not typical for this purpose and accessible only to very skilled dental professionals or to computer-aided design (CAD) engineers. As the demand for a digital approach to maxillofacial rehabilitation increases, more support from the software designer or manufacturer will be necessary to create user-friendly and accessible modules similar to those used in dental laboratories.
Collapse
|