1
|
Kim HT. Sequencing of the complete plastome of the thermal adder's-tongue fern, Ophioglossum thermale Kom. (Ophioglossaceae). Mitochondrial DNA B Resour 2024; 9:1063-1067. [PMID: 39155918 PMCID: PMC11328810 DOI: 10.1080/23802359.2024.2387255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024] Open
Abstract
The Ophioglossaceae family, one of the oldest orders of extant ferns, exhibits diverse morphological and chromosomal characteristics. This study presents the first complete plastome sequence of thermal adder's-tongue fern (Ophioglossum thermale), a species renowned for its antioxidant properties in traditional Chinese medicine. Our analyses revealed 27 simple sequence repeats (SSRs) in the plastome, with variations in SSR frequencies compared to related genera. Our phylogenetic analyses placed O. thermale within the Ophioglossum s.s. clade, supporting previous studies and suggesting polyphyly within the genus Ophioglossum based on the sensu PPG I system. The enlarged noncoding regions in fern organelles (ENRFOs) resulting from foreign DNA insertions in O. thermale were identified in the ycf2-trnH and trnT-trnfM regions, similar to other Ophioglossum species. ENRFOs were found at the LSC and SSC, but not in IRs in Ophioglossaceae. Consequently, foreign DNA insertions and lineage-specific SSRs shed light on plastome evolution in the Ophioglossaceae family.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Department of Crop Science, Kyungpook National University, Sangju, Kyungpook, South Korea
| |
Collapse
|
2
|
Kim HT. The complete chloroplast genome of the neo-allotetraploid fern, Asplenium pseudocapillipes S.H.Park et al. (Aspleniaceae). Mitochondrial DNA B Resour 2024; 9:191-194. [PMID: 38282980 PMCID: PMC10812863 DOI: 10.1080/23802359.2024.2306205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024] Open
Abstract
This study analyzed the complete plastome sequence of the neo-allotetraploid Asplenium pseudocapillipes S.H.Park et al. Asplenium pseudocapillipes has a typical circular plastome that comprises 157,242 bp with a large single copy (84,105 bp), a small single copy (21,503 bp), and two inverted repeats (IRs; 25,817 bp). The complete sequence comprises 127 genes, including 87 protein-coding genes (CDSs), eight ribosomal RNAs (rRNAs), 31 transfer RNAs (tRNAs), and one pseudogene. Among these genes, five CDSs, four rRNAs, and five tRNAs are duplicated in IRs. The guanine-cytosine content of the genome was 41.5%. The enlarged noncoding regions by Mobile Open Reading Frames in Fern Organelles were found once in other Asplenium species and twice in A. pseudocapillipes. Phylogenetic analysis based on 83 coding gene sequences revealed that A. pseudocapillipes is embedded in the A. varians subclade along with its progenitors.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Department of Crop Science, Kyungpook National University, Sangju, Kyungpook, South Korea
| |
Collapse
|
3
|
Hong JH, Park SH, Kim HT, Kim JS. The complete chloroplast genome sequence of Crepidomanes latealatum (Bosch) Copel. Mitochondrial DNA B Resour 2023; 8:783-786. [PMID: 37521905 PMCID: PMC10375924 DOI: 10.1080/23802359.2023.2238936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
The complete chloroplast genome sequence of Crepidomanes latealatum (Bosch) Copel. was determined in the present study. The genome is 145,943 base pairs (bp) in length and comprised two inverted repeats (32,990 bp) between a large single copy (92,170 bp) and a small single copy (20,783 bp). It contains 88 coding genes, 8 rRNA genes, 34 tRNA genes, and 1 pseudogene of trnL-UAA, and the GC content is 37.6%. Molecular phylogenetic analysis based on the plastid genome sequences of related taxa strongly supported the monophyly of the family Hymenophyllaceae, and the genus Vandenboschia was a sister group of Crepidomanes. In addition, compared to C. minutum, two large deletions of 453 bp and 878 bp were found in the IGS regions of petA-psbI and rrn16-trnV-GAC of C. latealatum cp genome, respectively.
Collapse
Affiliation(s)
- Ji Hye Hong
- Department of Forest Science, Chungbuk National University, Chungbuk, South Korea
| | - Sang Hee Park
- Department of Forest Science, Chungbuk National University, Chungbuk, South Korea
| | - Hyoung Tae Kim
- Department of Ecological and Environmental System, Kyungpook National University, Kyungpook, South Korea
| | - Jung Sung Kim
- Department of Forest Science, Chungbuk National University, Chungbuk, South Korea
| |
Collapse
|
4
|
Kim HT, Park SH, Kim JS. Dynamic hybridization between two spleenworts, Asplenium incisum and Asplenium ruprechtii in Korea. FRONTIERS IN PLANT SCIENCE 2023; 14:1116040. [PMID: 37476173 PMCID: PMC10354290 DOI: 10.3389/fpls.2023.1116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
Natural hybridization between Asplenium incisum and A. ruprechtii has been observed in Northeast Asia and its allotetraploid species, A. castaneoviride, was reported. However, the hybridization process between the parental species and the origin of the allotetraploid taxon remains obscure. Additionally, the systematic affinities of the recently described hybrid A. bimixtum, considered to have originated from the hybridization of A. ruprechtii, A. trichomanes, and A. incisum, is unresolved owing to its similarity to A. castaneoviride. The goals of this study were to (1) investigate the hybridization between A. ruprechtii and A. incisum; (2) verify the origin of A. castaneoviride occurring in Korea, whether it independently arose from 2x sterile hybrids; and (3) elucidate the reliability of identifying A. bimixtum. Three genotypes, A. incisum, A. ruprechtii, and their hybrid, were identified based on the nuclear gene pgiC sequence and finally divided them into six types by ploidy levels: diploid A. incisum, A. ruprechtii, and four hybrid types (diploid A. × castaneoviride, triploid A. × castaneoviride, allotetraploid A. castaneoviride, and A. bimixtum). In the analyses of plastid DNA, all hybrids had an A. ruprechtii-type rbcL gene. In addition, the four plastomes of A. ruprechtii and the hybrids had high pairwise sequence identities greater than 98.48%. They increased up to 99.88% when a large deletion of A. x castaneoriviride (2x) collected from Buramsan populations was ignored. Notably, this large deletion was also found in triploid A. × castaneoviride and allotetraploid A. castaneoviride in the same populations. Sequence data of the nuclear and plastid genes showed that hybridization is unidirectional, and A. ruprechtii is the maternal parent. The large deletion of rpoC2-rps2 commonly found in the different ploidy hybrids of the Buramsan population suggests that the allotetraploid A. castaneoviride can be created independently from sterile hybrids. We assume that both polyploidization driving allopolyploidy and minority cytotype exclusion took place independently in the population, since A castaenoviride co-occurs with A. ruprechtii in small populations. Furthermore, it was also observed that an enlarged noncoding region in fern organelle (ENRIFO) of the plastome was found in the genus Asplenium.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Department of Ecological and Environmental System, Kyungpook National University, Sangju, Republic of Korea
| | - Sang Hee Park
- Department of Forest Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jung Sung Kim
- Department of Forest Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
5
|
A Large Intergenic Spacer Leads to the Increase in Genome Size and Sequential Gene Movement around IR/SC Boundaries in the Chloroplast Genome of Adiantum malesianum (Pteridaceae). Int J Mol Sci 2022; 23:ijms232415616. [PMID: 36555263 PMCID: PMC9778900 DOI: 10.3390/ijms232415616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Expansion and contraction (ebb and flow events) of inverted repeat (IR) boundaries occur and are generally considered to be major factors affecting chloroplast (cp) genome size changes. Nonetheless, the Adiantum malesianum cp genome does not seem to follow this pattern. We sequenced, assembled and corrected the A. flabellulatum and A. malesianum cp genomes using the Illumina NovaSeq6000 platform, and we performed a comparative genome analysis of six Adiantum species. The results revealed differences in the IR/SC boundaries of A. malesianum caused by a 6876 bp long rpoB-trnD-GUC intergenic spacer (IGS) in the LSC. This IGS may create topological tension towards the LSC/IRb boundary in the cp genome, resulting in a sequential movement of the LSC genes. Consequently, this leads to changes of the IR/SC boundaries and may even destroy the integrity of trnT-UGU, which is located in IRs. This study provides evidence showing that it is the large rpoB-trnD-GUC IGS that leads to A. malesianum cp genome size change, rather than ebb and flow events. Then, the study provides a model to explain how the rpoB-trnD-GUC IGS in LSC affects A. malesianum IR/SC boundaries. Moreover, this study also provides useful data for dissecting the evolution of cp genomes of Adiantum. In future research, we can expand the sample to Pteridaceae to test whether this phenomenon is universal in Pteridaceae.
Collapse
|
6
|
Du XY, Kuo LY, Zuo ZY, Li DZ, Lu JM. Structural Variation of Plastomes Provides Key Insight Into the Deep Phylogeny of Ferns. FRONTIERS IN PLANT SCIENCE 2022; 13:862772. [PMID: 35645990 PMCID: PMC9134734 DOI: 10.3389/fpls.2022.862772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 06/02/2023]
Abstract
Structural variation of plastid genomes (plastomes), particularly large inversions and gene losses, can provide key evidence for the deep phylogeny of plants. In this study, we investigated the structural variation of fern plastomes in a phylogenetic context. A total of 127 plastomes representing all 50 recognized families and 11 orders of ferns were sampled, making it the most comprehensive plastomic analysis of fern lineages to date. The samples included 42 novel plastomes of 15 families with a focus on Hymenophyllales and Gleicheniales. We reconstructed a well-supported phylogeny of all extant fern families, detected significant structural synapomorphies, including 9 large inversions, 7 invert repeat region (IR) boundary shifts, 10 protein-coding gene losses, 7 tRNA gene losses or anticodon changes, and 19 codon indels (insertions or deletions) across the deep phylogeny of ferns, particularly on the backbone nodes. The newly identified inversion V5, together with the newly inferred expansion of the IR boundary R5, can be identified as a synapomorphy of a clade composed of Dipteridaceae, Matoniaceae, Schizaeales, and the core leptosporangiates, while a unique inversion V4, together with an expansion of the IR boundary R4, was verified as a synapomorphy of Gleicheniaceae. This structural evidence is in support of our phylogenetic inference, thus providing key insight into the paraphyly of Gleicheniales. The inversions of V5 and V7 together filled the crucial gap regarding how the "reversed" gene orientation in the IR region characterized by most extant ferns (Schizaeales and the core leptosporangiates) evolved from the inferred ancestral type as retained in Equisetales and Osmundales. The tRNA genes trnR-ACG and trnM-CAU were assumed to be relicts of the early-divergent fern lineages but intact in most Polypodiales, particularly in eupolypods; and the loss of the tRNA genes trnR-CCG, trnV-UAC, and trnR-UCU in fern plastomes was much more prevalent than previously thought. We also identified several codon indels in protein-coding genes within the core leptosporangiates, which may be identified as synapomorphies of specific families or higher ranks. This study provides an empirical case of integrating structural and sequence information of plastomes to resolve deep phylogeny of plants.
Collapse
Affiliation(s)
- Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jin-Mei Lu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
7
|
Kim H, Kim J. Structural Mutations in the Organellar Genomes of Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara Show Dynamic Gene Transfer. Int J Mol Sci 2021; 22:ijms22073770. [PMID: 33916499 PMCID: PMC8038606 DOI: 10.3390/ijms22073770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara is a broad-leaved valerian endemic to Ulleung Island, a noted hot spot of endemism in Korea. However, despite its widespread pharmacological use, this plant remains comparatively understudied. Plant cells generally contain two types of organellar genomes (the plastome and the mitogenome) that have undergone independent evolution, which accordingly can provide valuable information for elucidating the phylogenetic relationships and evolutionary histories of terrestrial plants. Moreover, the extensive mega-data available for plant genomes, particularly those of plastomes, can enable researchers to gain an in-depth understanding of the transfer of genes between different types of genomes. In this study, we analyzed two organellar genomes (the 155,179 bp plastome and the 1,187,459 bp mitogenome) of V. sambucifolia f. dageletiana and detected extensive changes throughout the plastome sequence, including rapid structural mutations associated with inverted repeat (IR) contraction and genetic variation. We also described features characterizing the first reported mitogenome sequence obtained for a plant in the order Dipsacales and confirmed frequent gene transfer in this mitogenome. We identified eight non-plastome-originated regions (NPRs) distributed within the plastome of this endemic plant, for six of which there were no corresponding sequences in the current nucleotide sequence databases. Indeed, one of these unidentified NPRs unexpectedly showed certain similarities to sequences from bony fish. Although this is ostensibly difficult to explain, we suggest that this surprising association may conceivably reflect the occurrence of gene transfer from a bony fish to the plastome of an ancestor of V. sambucifolia f. dageletiana mediated by either fungi or bacteria.
Collapse
Affiliation(s)
- Hyoungtae Kim
- Institute of Agriculture Science and Technology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea;
| | - Jungsung Kim
- Department of Forest Science, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
- Correspondence: ; Tel.: +82-43-261-2535
| |
Collapse
|