1
|
Moustakli E, Zikopoulos A, Skentou C, Stavros S, Sofikitis N, Georgiou I, Zachariou A. Integrative Assessment of Seminal Plasma Biomarkers: A Narrative Review Bridging the Gap between Infertility Research and Clinical Practice. J Clin Med 2024; 13:3147. [PMID: 38892858 PMCID: PMC11173072 DOI: 10.3390/jcm13113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Infertility represents a significant global health challenge impacting millions of couples worldwide. Approximately half of all infertile couples exhibit compromised semen quality, indicative of diminished male fertility. While the diagnosis of male infertility traditionally relies on semen analysis, its limitations in providing a comprehensive assessment of male reproductive health have spurred efforts to identify novel biomarkers. Seminal plasma, a complex fluid containing proteins, lipids, and metabolites, has emerged as a rich source of such indicators. Reproduction depends heavily on seminal plasma, the primary transporter of chemicals from male reproductive glands. It provides a non-invasive sample for urogenital diagnostics and has demonstrated potential in the identification of biomarkers linked to illnesses of the male reproductive system. The abundance of seminal proteins has enabled a deeper understanding of their biological functions, origins, and differential expression in various conditions associated with male infertility, including azoospermia, asthenozoospermia, oligozoospermia, teratozoospermia, among others. The true prevalence of male infertility is understated due to the limitations of the current diagnostic techniques. This review critically evaluates the current landscape of seminal plasma biomarkers and their utility in assessing male infertility. Βy bridging the gap between research and clinical practice, the integrative assessment of seminal plasma biomarkers offers a multimodal approach to comprehensively evaluate male infertility.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital, Barrack Rd, Exeter EX 25 DW, UK;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Nikolaos Sofikitis
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece; (N.S.); (A.Z.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece; (N.S.); (A.Z.)
| |
Collapse
|
2
|
Podgrajsek R, Bolha L, Pungert T, Pizem J, Jazbec K, Malicev E, Stimpfel M. Effects of Slow Freezing and Vitrification of Human Semen on Post-Thaw Semen Quality and miRNA Expression. Int J Mol Sci 2024; 25:4157. [PMID: 38673743 PMCID: PMC11050687 DOI: 10.3390/ijms25084157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Semen cryopreservation has played an important role in medically assisted reproduction for decades. In addition to preserving male fertility, it is sometimes used for overcoming logistical issues. Despite its proven clinical usability and safety, there is a lack of knowledge of how it affects spermatozoa at the molecular level, especially in terms of non-coding RNAs. Therefore, we conducted this study, where we compared slow freezing and vitrification of good- and poor-quality human semen samples by analyzing conventional sperm quality parameters, performing functional tests and analyzing the expression of miRNAs. The results revealed that cryopreservation of normozoospermic samples does not alter the maturity of spermatozoa (protamine staining, hyaluronan binding), although cryopreservation can increase sperm DNA fragmentation and lower motility. On a molecular level, we revealed that in both types of cryopreservation, miRNAs from spermatozoa are significantly overexpressed compared to those in the native semen of normozoospermic patients, but in oligozoospermic samples, this effect is observed only after vitrification. Moreover, we show that expression of selected miRNAs is mostly overexpressed in native oligozoospermic samples compared to normozoospermic samples. Conversely, when vitrified normozoospermic and oligozoospermic samples were compared, we determined that only miR-99b-5p was significantly overexpressed in oligozoospermic sperm samples, and when comparing slow freezing, only miR-15b-5p and miR-34b-3p were significantly under-expressed in oligozoospermic sperm samples. Therefore, our results imply that cryopreservation of normozoospermic sperm samples can modulate miRNA expression profiles in spermatozoa to become comparable to those in oligozoospermic samples.
Collapse
Affiliation(s)
- Rebeka Podgrajsek
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
| | - Luka Bolha
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.B.); (J.P.)
| | - Tjasa Pungert
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
| | - Joze Pizem
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.B.); (J.P.)
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000 Ljubljana, Slovenia; (K.J.); (E.M.)
| | - Elvira Malicev
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000 Ljubljana, Slovenia; (K.J.); (E.M.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Bahmyari S, Khatami SH, Taghvimi S, Rezaei Arablouydareh S, Taheri-Anganeh M, Ghasemnejad-Berenji H, Farazmand T, Soltani Fard E, Solati A, Movahedpour A, Ghasemi H. MicroRNAs in Male Fertility. DNA Cell Biol 2024; 43:108-124. [PMID: 38394131 DOI: 10.1089/dna.2023.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Around 50% of all occurrences of infertility are attributable to the male factor, which is a significant global public health concern. There are numerous circumstances that might interfere with spermatogenesis and cause the body to produce abnormal sperm. While evaluating sperm, the count, the speed at which they migrate, and their appearance are the three primary characteristics that are analyzed. MicroRNAs, also known as miRNAs, are present in all physiological fluids and tissues. They participate in both physiological and pathological processes. Researches have demonstrated that the expression of microRNA genes differs in infertile men. These genes regulate spermatogenesis at various stages and in several male reproductive cells. Hence, microRNAs have the potential to act as useful indicators in the diagnosis and treatment of male infertility and other diseases affecting male reproduction. Despite this, additional research is necessary to determine the precise miRNA regulation mechanisms.
Collapse
Affiliation(s)
- Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Tooba Farazmand
- Departmant of Gynecology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
4
|
Shi Z, Yu M, Guo T, Sui Y, Tian Z, Ni X, Chen X, Jiang M, Jiang J, Lu Y, Lin M. MicroRNAs in spermatogenesis dysfunction and male infertility: clinical phenotypes, mechanisms and potential diagnostic biomarkers. Front Endocrinol (Lausanne) 2024; 15:1293368. [PMID: 38449855 PMCID: PMC10916303 DOI: 10.3389/fendo.2024.1293368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Infertility affects approximately 10-15% of couples worldwide who are attempting to conceive, with male infertility accounting for 50% of infertility cases. Male infertility is related to various factors such as hormone imbalance, urogenital diseases, environmental factors, and genetic factors. Owing to its relationship with genetic factors, male infertility cannot be diagnosed through routine examination in most cases, and is clinically called 'idiopathic male infertility.' Recent studies have provided evidence that microRNAs (miRNAs) are expressed in a cell-or stage-specific manner during spermatogenesis. This review focuses on the role of miRNAs in male infertility and spermatogenesis. Data were collected from published studies that investigated the effects of miRNAs on spermatogenesis, sperm quality and quantity, fertilization, embryo development, and assisted reproductive technology (ART) outcomes. Based on the findings of these studies, we summarize the targets of miRNAs and the resulting functional effects that occur due to changes in miRNA expression at various stages of spermatogenesis, including undifferentiated and differentiating spermatogonia, spermatocytes, spermatids, and Sertoli cells (SCs). In addition, we discuss potential markers for diagnosing male infertility and predicting the varicocele grade, surgical outcomes, ART outcomes, and sperm retrieval rates in patients with non-obstructive azoospermia (NOA).
Collapse
Affiliation(s)
- Ziyan Shi
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Miao Yu
- Science Experiment Center, China Medical University, Shenyang, China
| | - Tingchao Guo
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yu Sui
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Zhiying Tian
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xiang Ni
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xinren Chen
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Miao Jiang
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Jingyi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Yongping Lu
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Meina Lin
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Vickram A, Srikumar P, Srinivasan S, Jeyanthi P, Anbarasu K, Thanigaivel S, Nibedita D, Jenila Rani D, Rohini K. Seminal exosomes - An important biological marker for various disorders and syndrome in human reproduction. Saudi J Biol Sci 2021; 28:3607-3615. [PMID: 34121904 PMCID: PMC8176048 DOI: 10.1016/j.sjbs.2021.03.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Exosomes are nano-sized membrane vesicles, secreted by different types of cells into the body's biological fluids. They are found in abundance in semen as compared to other fluids. Exosomes contain a cargo of lipid molecules, proteins, phospholipids, cholesterol, mRNAs, and miRNAs. Each molecule of seminal exosomes (SE) has a potential role in male reproduction for childbirth. Many potential candidates are available within the seminal exosomes that can be used as diagnostic markers for various diseases or syndromes associated with male reproduction. Also these seminal exospmes play a major role in female reproductive tract for effective fertilization. AIM The aim of this review is to focus on the advancement of human seminal exosomal research and its various properties. METHODS We used many databases like Scopus, Google scholar, NCBI-NLM and other sources to filter the articles of interest published in exosomes. We used phrases like "Exosomes in human semen", "Composition of exosomes in human semen" and other relevant words to filter the best articles. RESULTS Seminal exosomes play a major role in sperm functions like cell-to-cell communication, motility of the sperm cells, maintaining survival capacity for the sperm in the female reproductive tract and spermatogenesis. Also, seminal exosomes are used as a carrier for many regulatory elements using small RNA molecules. miRNAs of the seminal exosomes can be used as a diagnostic marker for prostate cancer instead of prostate specific antigen (PSA). Epididymosomes can be used as a biomarker for reproductive diseases and male infertility. CONCLUSION Seminal exosomes could be used as biological markers for various reproductive disorders, male infertility diagnosis, and it can be used in anti-retroviral research for the identification of novel therapeutics for HIV-1 infection and transmission.
Collapse
Affiliation(s)
- A.S. Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - P.S. Srikumar
- Unit of Psychiatry, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah,Malaysia
| | - S. Srinivasan
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - K. Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - S. Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Dey Nibedita
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - D. Jenila Rani
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah, Malaysia
| |
Collapse
|
6
|
Pantos K, Grigoriadis S, Tomara P, Louka I, Maziotis E, Pantou A, Nitsos N, Vaxevanoglou T, Kokkali G, Agarwal A, Sfakianoudis K, Simopoulou M. Investigating the Role of the microRNA-34/449 Family in Male Infertility: A Critical Analysis and Review of the Literature. Front Endocrinol (Lausanne) 2021; 12:709943. [PMID: 34276570 PMCID: PMC8281345 DOI: 10.3389/fendo.2021.709943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
There is a great body of evidence suggesting that in both humans and animal models the microRNA-34/449 (miR-34/449) family plays a crucial role for normal testicular functionality as well as for successful spermatogenesis, regulating spermatozoa maturation and functionality. This review and critical analysis aims to summarize the potential mechanisms via which miR-34/449 dysregulation could lead to male infertility. Existing data indicate that miR-34/449 family members regulate ciliogenesis in the efferent ductules epithelium. Upon miR-34/449 dysregulation, ciliogenesis in the efferent ductules is significantly impaired, leading to sperm aggregation and agglutination as well as to defective reabsorption of the seminiferous tubular fluids. These events in turn cause obstruction of the efferent ductules and thus accumulation of the tubular fluids resulting to high hydrostatic pressure into the testis. High hydrostatic pressure progressively leads to testicular dysfunction as well as to spermatogenic failure and finally to male infertility, which could range from severe oligoasthenozoospermia to azoospermia. In addition, miR-34/449 family members act as significant regulators of spermatogenesis with an essential role in controlling expression patterns of several spermatogenesis-related proteins. It is demonstrated that these microRNAs are meiotic specific microRNAs as their expression is relatively higher at the initiation of meiotic divisions during spermatogenesis. Moreover, data indicate that these molecules are essential for proper formation as well as for proper function of spermatozoa per se. MicroRNA-34/449 family seems to exert significant anti-oxidant and anti-apoptotic properties and thus contribute to testicular homeostatic regulation. Considering the clinical significance of these microRNAs, data indicate that the altered expression of the miR-34/449 family members is strongly associated with several aspects of male infertility. Most importantly, miR-34/449 levels in spermatozoa, in testicular tissues as well as in seminal plasma seem to be directly associated with severity of male infertility, indicating that these microRNAs could serve as potential sensitive biomarkers for an accurate individualized differential diagnosis, as well as for the assessment of the severity of male factor infertility. In conclusion, dysregulation of miR-34/449 family detrimentally affects male reproductive potential, impairing both testicular functionality as well as spermatogenesis. Future studies are needed to verify these conclusions.
Collapse
Affiliation(s)
| | - Sokratis Grigoriadis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Penelope Tomara
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Louka
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nitsos
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | | | - Georgia Kokkali
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
| | | | - Mara Simopoulou
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Mara Simopoulou,
| |
Collapse
|