1
|
Ramasubramanian D, Hernández-Verdejo JL, López-Alonso JM. Influence of Contact Lens Parameters on Cornea: Biomechanical Analysis. Bioengineering (Basel) 2024; 11:966. [PMID: 39451343 PMCID: PMC11505363 DOI: 10.3390/bioengineering11100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
This study presents a finite element analysis to model ocular biomechanics and the interactions between the human eye and contact lenses in the closed-eye condition. The closed-eye state, where the eyelids are fully shut, presents challenges for experimental measurements due to the invasive nature of accessing and analysing the contact lens and corneal interface, making simulation tools valuable for accurate characterisation. The primary objective of this study was to examine how CLs fold and twist and their impact on the cornea when the eye is closed. The secondary aim of this study was to assess how crucial contact lens parameters (Young's modulus, base curve, and diameter) influence corneal stress distribution and the overall fit of the lens on the eye. The findings show that increasing Young's modulus significantly reduces corneal stress and promotes uniform stress distribution, making it the most influential factor for wearer comfort and safety. While base curve and diameter variations primarily affect contact area, their impact on stress distribution is minimal. This research provides insights for improving contact lens design and enhancing safety for contact lens wearers.
Collapse
Affiliation(s)
- Darshan Ramasubramanian
- Faculty of Optics and Optometry, Complutense University of Madrid, Arcos de Jalón 118, 28037 Madrid, Spain; (D.R.); (J.L.H.-V.)
- Alain Afflelou Óptico Portugal, Av. António Augusto de Aguiar 11, 1050-016 Lisbon, Portugal
| | - José Luis Hernández-Verdejo
- Faculty of Optics and Optometry, Complutense University of Madrid, Arcos de Jalón 118, 28037 Madrid, Spain; (D.R.); (J.L.H.-V.)
| | - José Manuel López-Alonso
- Faculty of Optics and Optometry, Complutense University of Madrid, Arcos de Jalón 118, 28037 Madrid, Spain; (D.R.); (J.L.H.-V.)
| |
Collapse
|
2
|
Ramasubramanian D, Hernández-Verdejo JL, López-Alonso JM. Contact lens fitting and changes in the tear film dynamics: mathematical and computational models review. Graefes Arch Clin Exp Ophthalmol 2024; 262:2751-2764. [PMID: 38430228 PMCID: PMC11377471 DOI: 10.1007/s00417-024-06400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
PURPOSE This review explores mathematical models, blinking characterization, and non-invasive techniques to enhance understanding and refine clinical interventions for ocular conditions, particularly for contact lens wear. METHODS The review evaluates mathematical models in tear film dynamics and their limitations, discusses contact lens wear models, and highlights computational mechanical models. It also explores computational techniques, customization of models based on individual blinking dynamics, and non-invasive diagnostic tools like high-speed cameras and advanced imaging technologies. RESULTS Mathematical models provide insights into tear film dynamics but face challenges due to simplifications. Contact lens wear models reveal complex ocular physiology and design aspects, aiding in lens development. Computational mechanical models explore eye biomechanics, often integrating tear film dynamics into a Multiphysics framework. While different computational techniques have their advantages and disadvantages, non-invasive tools like OCT and thermal imaging play a crucial role in customizing these Multiphysics models, particularly for contact lens wearers. CONCLUSION Recent advancements in mathematical modeling and non-invasive tools have revolutionized ocular health research, enabling personalized approaches. The review underscores the importance of interdisciplinary exploration in the Multiphysics approach involving tear film dynamics and biomechanics for contact lens wearers, promoting advancements in eye care and broader ocular health research.
Collapse
|
3
|
Mascolini MV, Toniolo I, Carniel EL, Fontanella CG. Ex vivo, in vivo and in silico studies of corneal biomechanics: a systematic review. Phys Eng Sci Med 2024; 47:403-441. [PMID: 38598066 PMCID: PMC11166853 DOI: 10.1007/s13246-024-01403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/08/2024] [Indexed: 04/11/2024]
Abstract
Healthy cornea guarantees the refractive power of the eye and the protection of the inner components, but injury, trauma or pathology may impair the tissue shape and/or structural organization and therefore its material properties, compromising its functionality in the ocular visual process. It turns out that biomechanical research assumes an essential role in analysing the morphology and biomechanical response of the cornea, preventing pathology occurrence, and improving/optimising treatments. In this review, ex vivo, in vivo and in silico methods for the corneal mechanical characterization are reported. Experimental techniques are distinct in testing mode (e.g., tensile, inflation tests), samples' species (human or animal), shape and condition (e.g., healthy, treated), preservation methods, setup and test protocol (e.g., preconditioning, strain rate). The meaningful results reported in the pertinent literature are discussed, analysing differences, key features and weaknesses of the methodologies adopted. In addition, numerical techniques based on the finite element method are reported, incorporating the essential steps for the development of corneal models, such as geometry, material characterization and boundary conditions, and their application in the research field to extend the experimental results by including further relevant aspects and in the clinical field for diagnostic procedure, treatment and planning surgery. This review aims to analyse the state-of-art of the bioengineering techniques developed over the years to study the corneal biomechanics, highlighting their potentiality to improve diagnosis, treatment and healing process of the corneal tissue, and, at the same, pointing out the current limits in the experimental equipment and numerical tools that are not able to fully characterize in vivo corneal tissues non-invasively and discourage the use of finite element models in daily clinical practice for surgical planning.
Collapse
Affiliation(s)
- Maria Vittoria Mascolini
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Ilaria Toniolo
- Department of Industrial Engineering, University of Padova, Padova, Italy.
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy.
| | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Chiara Giulia Fontanella
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Jin L, Zhang L, Yan C, Liu M, Dean DC, Liu Y. Corneal injury repair and the potential involvement of ZEB1. EYE AND VISION (LONDON, ENGLAND) 2024; 11:20. [PMID: 38822380 PMCID: PMC11143703 DOI: 10.1186/s40662-024-00387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The cornea, consisting of three cellular and two non-cellular layers, is the outermost part of the eyeball and frequently injured by external physical, chemical, and microbial insults. The epithelial-to-mesenchymal transition (EMT) plays a crucial role in the repair of corneal injuries. Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor involved in EMT, is expressed in the corneal tissues. It regulates cell activities like migration, transformation, and proliferation, and thereby affects tissue inflammation, fibrosis, tumor metastasis, and necrosis by mediating various major signaling pathways, including transforming growth factor (TGF)-β. Dysfunction of ZEB1 would impair corneal tissue repair leading to epithelial healing delay, interstitial fibrosis, neovascularization, and squamous cell metaplasia. Understanding the mechanism underlying ZEB1 regulation of corneal injury repair will help us to formulate a therapeutic approach to enhance corneal injury repair.
Collapse
Affiliation(s)
- Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Chunxiao Yan
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Mengxin Liu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Douglas C Dean
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
5
|
Yan S, Song X, Hu X, Yao K, Qu S. A novel intraocular pressure predicting method based on hyperelastic mechanical model of cornea. J Mech Behav Biomed Mater 2024; 153:106475. [PMID: 38430796 DOI: 10.1016/j.jmbbm.2024.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Measuring intraocular pressure (IOP) is crucial and remains challenging in diagnosing glaucoma, as it is associated with cornea deformation during inflation. In this study, a three-dimensional analytical model based on hyperelastic constitutive relationship to predict correlation between cornea vertex displacement and the IOP is proposed. The analytical model is validated by rigorous experiments. Rabbit corneas were selected for this study and their mechanical properties were obtained using uniaxial tensile tests. To mimic the environment in which the cornea exists, an artificial anterior chamber equipped with water-injection pipelines was constructed to study the relationship between the corneal vertex displacement with IOP value in practical situation. The experimental results of rabbits corneas prove that the IOP can be deduced based on the measured corneal vertex displacement by the analytical model. Furthermore, subtle difference occurs when comparing the calculated human IOPs with those measured by medical equipment, demonstrating that the proposed method is suitable for monitoring the IOP of human. This novel IOP predicting method provides new inspiration for the design of eyepieces, as well as the preoperative preparation for laser surgery and evaluation of corneal damage.
Collapse
Affiliation(s)
- Shi Yan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China; State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, and Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, PR China
| | - Xiaohui Song
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Xiaocheng Hu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, and Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, PR China; China Academy of Space Technology (Xi'an), Xi'an, 710100, PR China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China.
| | - Shaoxing Qu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China; State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, and Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
6
|
Callejas A, Faris I, Torres J, Rus G. Nonlinear fourth-order elastic characterization of the cornea using torsional wave elastography. Phys Eng Sci Med 2023; 46:1489-1501. [PMID: 37642939 DOI: 10.1007/s13246-023-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Measuring the mechanical nonlinear properties of the cornea remains challenging due to the lack of consensus in the methodology and in the models that effectively predict its behaviour. This study proposed developing a procedure to reconstruct nonlinear fourth-order elastic properties of the cornea based on a mathematical model derived from the theory of Hamilton et al. and using the torsional wave elastography (TWE) technique. In order to validate its diagnostic capability of simulated pathological conditions, two different groups were studied, non-treated cornea samples (n=7), and ammonium hydroxide ([Formula: see text]) treated samples (n=7). All the samples were measured in-plane by a torsional wave device by increasing IOP from 5 to 25 mmHg with 5 mmHg steps. The results show a nonlinear variation of the shear wave speed with the IOP, with higher values for higher IOPs. Moreover, the shear wave speed values of the control group were higher than those of the treated group. The study also revealed significant differences between the control and treated groups for the Lamé parameter [Formula: see text] (25.9-6.52 kPa), third-order elastic constant A (215.09-44.85 kPa), and fourth-order elastic constant D (523.5-129.63 kPa), with p-values of 0.010, 0.024, and 0.032, respectively. These findings demonstrate that the proposed procedure can distinguish between healthy and damaged corneas, making it a promising technique for detecting diseases associated with IOP alteration, such as corneal burns, glaucoma, or ocular hypertension.
Collapse
Affiliation(s)
- Antonio Callejas
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain.
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain.
| | - Inas Faris
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain
| | - Jorge Torres
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain
| | - Guillermo Rus
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain
- Excellence Research Unit "ModelingNature" (MNat), Universidad de Granada, Granada, 18001, Spain
| |
Collapse
|
7
|
Zhang X, Sun L, Chen L, Zhang C, Xian Y, Aruma A, Wei R, Shen Y, Chen W, Zhou X. Corneal biomechanical stiffness and histopathological changes after in vivo repeated accelerated corneal cross-linking in cat eyes. Exp Eye Res 2023; 227:109363. [PMID: 36584907 DOI: 10.1016/j.exer.2022.109363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/09/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Corneal cross-linking (CXL) has been proved efficiency for treating progressive keratoconus and other corneal ectasia diseases by stabilizing corneal geometry and biomechanics. However, the necessity of repeated CXL treatment in patients is unknown. This study aimed to investigate corneal biomechanical stiffness and change in corneal histopathological characteristics after repeated accelerated CXL (A-CXL) in cat eyes. A-CXL was performed with 0.1% riboflavin applied for 10 min, followed by ultraviolet A irradiation at 30 mW/cm2 for 3 min at 365 nm in 15 domestic cats. Corneas (n = 30) were divided into three groups: one-time accelerated corneal cross-linking (A-CXL*1 group), repeated accelerated corneal cross-linking (A-CXL*2 group), and an untreated control group. In A-CXL*2 group, A-CXL was repeated at 1-month intervals. In vivo ocular examinations were performed pre- and postoperatively. Biomechanical analysis was performed using a biotester biaxial testing system. We used the Mooney-Rivlin strain-energy function to describe corneal material properties. No infection in any case after A-CXL was observed. Biomechanical tests showed that the stress-strain curves of the two A-CXL groups were significantly different from those of the control group (P < 0.01), whereas stress-strain curve of the A-CXL*2 group was similar to that of the A-CXL*1 group (P > 0.05). Delayed epithelial healing and haze were observed 1 month after surgery. Stromal demarcation line depth measured with anterior spectral-domain optical coherence tomography was 187.6 ± 20.4 and 197.1 ± 11.5 μm for the A-CXL*1 and A-CXL*2 groups, respectively (P > 0.05). These results show that A-CXL can increase corneal biomechanics in cat eyes. The biomechanical enhancement of cat corneas treated with repeated A-CXL at 1-month intervals was similar to that of performing a one-time A-CXL. Repeated cross-linking procedures at short intervals may increase the risk of adverse reactions, and more caution should be taken in clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, 200031, China
| | - Ling Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, 200031, China
| | - Lingfeng Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Chaoqin Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Yiyong Xian
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, 200031, China
| | - Aruma Aruma
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, 200031, China
| | - Ruoyan Wei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, 200031, China
| | - Yang Shen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, 200031, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, 200031, China.
| |
Collapse
|
8
|
Zhang J, Murgoitio-Esandi J, Qian X, Li R, Gong C, Nankali A, Hao L, Xu BY, Kirk Shung K, Oberai A, Zhou Q. High-Frequency Ultrasound Elastography to Assess the Nonlinear Elastic Properties of the Cornea and Ciliary Body. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2621-2629. [PMID: 35820015 PMCID: PMC9547080 DOI: 10.1109/tuffc.2022.3190400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mechanical properties of the anterior anatomical structures of the eye, such as the cornea and ciliary body, play a key role in the ocular function and homeostasis. However, measuring the biomechanical properties of the anterior ocular structures, especially deeper structures, such as the ciliary body, remains a challenge due to the lack of high-resolution imaging tools. Herein, we implement a mechanical shaker-based high-frequency ultrasound elastography technique that can track the induced elastic wave propagation to assess the linear and nonlinear elastic properties of anterior ocular structures. The findings of this study advance our understanding of the role of anterior ocular structures in the pathogenesis of different ocular disorders, such as glaucoma.
Collapse
|
9
|
Torres J, H Faris I, Callejas A, Reyes-Ortega F, Melchor J, Gonzalez-Andrades M, Rus G. Torsional wave elastography to assess the mechanical properties of the cornea. Sci Rep 2022; 12:8354. [PMID: 35589817 PMCID: PMC9120141 DOI: 10.1038/s41598-022-12151-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Corneal mechanical changes are believed to occur before any visible structural alterations observed during routine clinical evaluation. This study proposed developing an elastography technique based on torsional waves (TWE) adapted to the specificities of the cornea. By measuring the displacements in the propagation plane perpendicular to the axis of the emitter, the effect of guided waves in plate-like media was proven negligible. Ex vivo experiments were carried out on porcine corneal samples considering a group of control and one group of alkali burn treatment ([Formula: see text]OH) that modified the mechanical properties. Phase speed was recovered as a function of intraocular pressure (IOP), and a Kelvin-Voigt rheological model was fitted to the dispersion curves to estimate viscoelastic parameters. A comparison with uniaxial tensile testing with thin-walled assumptions was also performed. Both shear elasticity and viscosity correlated positively with IOP, being the elasticity lower and the viscosity higher for the treated group. The viscoelastic parameters ranged from 21.33 to 63.17 kPa, and from 2.82 to 5.30 Pa s, for shear elasticity and viscosity, respectively. As far as the authors know, no other investigations have studied this mechanical plane under low strain ratios, typical of dynamic elastography in corneal tissue. TWE reflected mechanical properties changes after treatment, showing a high potential for clinical diagnosis due to its rapid performance time and paving the way for future in vivo studies.
Collapse
Affiliation(s)
- Jorge Torres
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, Spain
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - Inas H Faris
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, Spain.
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain.
| | - Antonio Callejas
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, Spain
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - Felisa Reyes-Ortega
- Department of Ophthalmology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Juan Melchor
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
- Excellence Research Unit "ModelingNature" (MNat), Universidad de Granada, Granada, Spain
- Department of Statistics and Operations Research, University of Granada, Granada, Spain
| | - Miguel Gonzalez-Andrades
- Department of Ophthalmology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.
| | - Guillermo Rus
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, Spain
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
- Excellence Research Unit "ModelingNature" (MNat), Universidad de Granada, Granada, Spain
| |
Collapse
|
10
|
Giraudet C, Diaz J, Le Tallec P, Allain JM. Multiscale mechanical model based on patient-specific geometry: Application to early keratoconus development. J Mech Behav Biomed Mater 2022; 129:105121. [DOI: 10.1016/j.jmbbm.2022.105121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
|
11
|
Biaxial Estimation of Biomechanical Constitutive Parameters of Passive Porcine Sclera Soft Tissue. Appl Bionics Biomech 2022; 2022:4775595. [PMID: 35265175 PMCID: PMC8901350 DOI: 10.1155/2022/4775595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/22/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
This study assesses the modelling capabilities of four constitutive hyperelastic material models to fit the experimental data of the porcine sclera soft tissue. It further estimates the material parameters and discusses their applicability to a finite element model by examining the statistical dispersion measured through the standard deviation. Fifteen sclera tissues were harvested from porcine' slaughtered at an abattoir and were subjected to equi-biaxial testing. The results show that all the four material models yielded very good correlations at correlations above 96%. The polynomial (anisotropic) model gave the best correlation of 98%. However, the estimated material parameters varied widely from one test to another such that there would be need to normalise the test data to avoid long optimisation processes after applying the average material parameters to finite element models. However, for application of the estimated material parameters to finite element models, there would be need to consider normalising the test data to reduce the search region for the optimisation algorithms. Although the polynomial (anisotropic) model yielded the best correlation, it was found that the Choi-Vito had the least variation in the estimated material parameters, thereby making it an easier option for application of its material parameters to a finite element model and requiring minimum effort in the optimisation procedure. For the porcine sclera tissue, it was found that the anisotropy was more influenced by the fiber-related properties than the background material matrix-related properties.
Collapse
|
12
|
|