1
|
Guo K, Pyšek P, Chytrý M, Divíšek J, Sychrová M, Lososová Z, van Kleunen M, Pierce S, Guo WY. Stage dependence of Elton's biotic resistance hypothesis of biological invasions. NATURE PLANTS 2024; 10:1484-1492. [PMID: 39227727 DOI: 10.1038/s41477-024-01790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Elton's biotic resistance hypothesis posits that species-rich communities are more resistant to invasion. However, it remains unknown how species, phylogenetic and functional richness, along with environmental and human-impact factors, collectively affect plant invasion as alien species progress along the introduction-naturalization-invasion continuum. Using data from 12,056 local plant communities of the Czech Republic, this study reveals varying effects of these factors on the presence and richness of alien species at different invasion stages, highlighting the complexity of the invasion process. Specifically, we demonstrate that although species richness and functional richness of resident communities had mostly negative effects on alien species presence and richness, the strength and sometimes also direction of these effects varied along the continuum. Our study not only underscores that evidence for or against Elton's biotic resistance hypothesis may be stage-dependent but also suggests that other invasion hypotheses should be carefully revisited given their potential stage-dependent nature.
Collapse
Affiliation(s)
- Kun Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration & Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Milan Chytrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Divíšek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martina Sychrová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeňka Lososová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, People's Republic of China
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Milan, Italy
| | - Wen-Yong Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration & Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China.
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhoushan, People's Republic of China.
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Lopes e Silva L, Andrade JADC, Maltoni KL, Lannes LS. Potential of root acid phosphatase activity to reduce phosphorus fertilization in maize cultivated in Brazil. PLoS One 2023; 18:e0292542. [PMID: 37889904 PMCID: PMC10610443 DOI: 10.1371/journal.pone.0292542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
It is urgent to mitigate the environmental impacts resulting from agriculture, especially in highly biodiverse and threatened areas, as the Brazilian Cerrado. We aim to investigate whether root acid phosphatase activity is alternative plant strategies for nutrient acquisition in maize genotypes cultivated under fertilized and unfertilized conditions in Brazil, potentially contributing to reducing the use of phosphate fertilizers needed for production. Three experiments were performed: the first was conducted in a glasshouse, with 17 experimental maize inbred lines and two phosphorus (P) treatments; the second in the field, with three maize inbred lines and two treatments, one without fertilization and another with NPK fertilization; and the third was also carried out in the field, with 13 commercial hybrids, grown either under NK or under NPK treatment. Plant variables were measured and tested for the response to fertilization, differences amongst genotypes and response to root acid phosphatase activity. The activity of root acid phosphatase was modulated by the availability of P and nitrogen (N) in the soil and promoted grain filling of commercial hybrids in soils with low P availability. These results demonstrate that it is possible to select genotypes that are more adapted to low soil P availability aiming at organic production, or to use genotypes that have high phosphatase activity under P fertilization to reduce the amount of added P needed for maize production in Brazil.
Collapse
Affiliation(s)
- Lucas Lopes e Silva
- Department of Biology and Animal Science, São Paulo State University, Ilha Solteira, São Paulo, Brazil
| | | | - Kátia Luciene Maltoni
- Department of Plant Health, Rural Engineering and Soils, São Paulo University, Ilha Solteira, São Paulo, Brazil
| | - Lucíola Santos Lannes
- Department of Biology and Animal Science, São Paulo State University, Ilha Solteira, São Paulo, Brazil
| |
Collapse
|
3
|
Shiri K, Mlambo D, Mutungwazi L. Effects of road and woodland type on the invasibility of woodlands invaded by Lantana camara in southern Africa. ACTA OECOLOGICA 2023. [DOI: 10.1016/j.actao.2023.103912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Yang X, Shen K, Xia T, He Y, Guo Y, Wu B, Han X, Yan J, Jiao M. Invasive and Native Plants Differentially Respond to Exogenous Phosphorus Addition in Root Growth and Nutrition Regulated by Arbuscular Mycorrhizal Fungi. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112195. [PMID: 37299174 DOI: 10.3390/plants12112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Plant invasion has severely damaged ecosystem stability and species diversity worldwide. The cooperation between arbuscular mycorrhizal fungi (AMF) and plant roots is often affected by changes in the external environment. Exogenous phosphorus (P) addition can alter the root absorption of soil resources, thus regulating the root growth and development of exotic and native plants. However, it remains unclear how exogenous P addition regulates the root growth and development of exotic and native plants mediated by AMF, affecting the exotic plant invasion. In this experiment, the invasive plant Eupatorium adenophorum and native plant Eupatorium lindleyanum were selected and cultured under intraspecific (Intra-) competition and interspecific (Inter-) competition conditions, involving inoculation with (M+) and without AMF (M-) and three different levels of P addition including no addition (P0), addition with 15 mg P kg-1 soil (P15), and addition with 25 mg P kg-1 soil (P25) for the two species. Root traits of the two species were analyzed to study the response of the two species' roots to AMF inoculation and P addition. The results showed that AMF significantly promoted the root biomass, length, surface area, volume, tips, branching points, and carbon (C), nitrogen (N), and P accumulation of the two species. Under M+ treatment, the Inter- competition decreased the root growth and nutrient accumulation of invasive E. adenophorum but increased the root growth and nutrient accumulation of native E. lindleyanum relative to the Intra- competition. Meanwhile, the exotic and native plants responded differently to P addition, exhibiting root growth and nutrient accumulation of invasive E. adenophorum increased with P addition, whereas native E. lindleyanum reduced with P addition. Further, the root growth and nutrition accumulation of native E. lindleyanum were higher than invasive E. adenophorum under Inter- competition. In conclusion, exogenous P addition promoted the invasive plant but reduced the native plant in root growth and nutrient accumulation regulated by AMF, although the native plant outcompeted the invasive plant when the two species competed. The findings provide a critical perspective that the anthropogenic P fertilizer addition might potentially contribute to the successful invasion of exotic plants.
Collapse
Affiliation(s)
- Xionggui Yang
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Kaiping Shen
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Tingting Xia
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Yuejun He
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Yun Guo
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bangli Wu
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Xu Han
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Jiawei Yan
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Min Jiao
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Lopes A, Demarchi LO, Piedade MTF, Schöngart J, Wittmann F, Munhoz CBR, Ferreira CS, Franco AC. Predicting the range expansion of invasive alien grasses under climate change in the Neotropics. Perspect Ecol Conserv 2023. [DOI: 10.1016/j.pecon.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
6
|
Wang XY, Gao S, Chen T, Wang J, Yu FH. Interactions between soil microbes and native species drive a diversity-invasibility relationship. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Dea HI, Urban A, Kazarina A, Houseman GR, Thomas SG, Loecke T, Greer MJ, Platt TG, Lee S, Jumpponen A. Precipitation, Not Land Use, Primarily Determines the Composition of Both Plant and Phyllosphere Fungal Communities. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:805225. [PMID: 37746168 PMCID: PMC10512219 DOI: 10.3389/ffunb.2022.805225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 06/10/2022] [Indexed: 09/26/2023]
Abstract
Plant communities and fungi inhabiting their phyllospheres change along precipitation gradients and often respond to changes in land use. Many studies have focused on the changes in foliar fungal communities on specific plant species, however, few have addressed the association between whole plant communities and their phyllosphere fungi. We sampled plant communities and associated phyllosphere fungal communities in native prairie remnants and post-agricultural sites across the steep precipitation gradient in the central plains in Kansas, USA. Plant community cover data and MiSeq ITS2 metabarcode data of the phyllosphere fungal communities indicated that both plant and fungal community composition respond strongly to mean annual precipitation (MAP), but less so to land use (native prairie remnants vs. post-agricultural sites). However, plant and fungal diversity were greater in the native remnant prairies than in post-agricultural sites. Overall, both plant and fungal diversity increased with MAP and the communities in the arid and mesic parts of the gradient were distinct. Analyses of the linkages between plant and fungal communities (Mantel and Procrustes tests) identified strong correlations between the composition of the two. However, despite the strong correlations, regression models with plant richness, diversity, or composition (ordination axis scores) and land use as explanatory variables for fungal diversity and evenness did not improve the models compared to those with precipitation and land use (ΔAIC < 2), even though the explanatory power of some plant variables was greater than that of MAP as measured by R2. Indicator taxon analyses suggest that grass species are the primary taxa that differ in the plant communities. Similar analyses of the phyllosphere fungi indicated that many plant pathogens are disproportionately abundant either in the arid or mesic environments. Although decoupling the drivers of fungal communities and their composition - whether abiotic or host-dependent - remains a challenge, our study highlights the distinct community responses to precipitation and the tight tracking of the plant communities by their associated fungal symbionts.
Collapse
Affiliation(s)
- Hannah I. Dea
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Abigail Urban
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - Anna Kazarina
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Gregory R. Houseman
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - Samantha G. Thomas
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, United States
| | - Terry Loecke
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, United States
- Environmental Studies Program, University of Kansas, Lawrence, KS, United States
| | - Mitchell J. Greer
- Department of Agriculture and Nutrition Science, Southern Utah University, Cedar City, UT, United States
| | - Thomas G. Platt
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sonny Lee
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
8
|
Gastauer M, Ramos SJ, Caldeira CF, Siqueira JO. Reintroduction of native plants indicates the return of ecosystem services after iron mining at the Urucum Massif. Ecosphere 2021. [DOI: 10.1002/ecs2.3762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Markus Gastauer
- Instituto Tecnológico Vale Rua Boaventura da Silva, 955, Nazaré Belém Pará 66055‐200 Brazil
| | - Silvio Junio Ramos
- Instituto Tecnológico Vale Rua Boaventura da Silva, 955, Nazaré Belém Pará 66055‐200 Brazil
| | - Cecílio Frois Caldeira
- Instituto Tecnológico Vale Rua Boaventura da Silva, 955, Nazaré Belém Pará 66055‐200 Brazil
| | - José Oswaldo Siqueira
- Instituto Tecnológico Vale Rua Boaventura da Silva, 955, Nazaré Belém Pará 66055‐200 Brazil
| |
Collapse
|
9
|
Massi KG, Eugênio CUO, Franco AC, Hoffmann WA. The effects of tree cover and soil nutrient addition on native herbaceous richness in a neotropical savanna. Biotropica 2021. [DOI: 10.1111/btp.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Klécia Gili Massi
- Departamento de Ecologia Universidade de Brasília Brasilia Brazil
- Departamento de Engenharia Ambiental Instituto de Ciência e Tecnologia Universidade Estadual Paulista (Unesp) São José dos Campos Brazil
| | | | | | | |
Collapse
|