1
|
Song L, Qiu Q, Ju F, Zheng C. Mechanisms of doxorubicin-induced cardiac inflammation and fibrosis; therapeutic targets and approaches. Arch Biochem Biophys 2024; 761:110140. [PMID: 39243924 DOI: 10.1016/j.abb.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Doxorubicin plays a pivotal role in the treatment of various malignancies. Despite its efficacy, the cardiotoxicity associated with doxorubicin limits its clinical utility. The cardiotoxic nature of doxorubicin is attributed to several mechanisms, including its interference with mitochondrial function, the generation of reactive oxygen species (ROS), and the subsequent damage to cardiomyocyte DNA, proteins, and lipids. Furthermore, doxorubicin disrupts the homeostasis of cardiac-specific transcription factors and signaling pathways, exacerbating cardiac dysfunction. Oxidative stress, cell death, and other severe changes, such as mitochondrial dysfunction, activation of pro-oxidant enzymes, the renin-angiotensin system (RAS), endoplasmic reticulum (ER) stress, and infiltration of immune cells in the heart after treatment with doxorubicin, may cause inflammatory and fibrotic responses. Fibrosis and inflammation can lead to a range of disorders in the heart, resulting in potential cardiac dysfunction and disease. Various adjuvants have shown potential in preclinical studies to mitigate these challenges associated with cardiac inflammation and fibrosis. Antioxidants, plant-based products, specific inhibitors, and cardioprotective drugs may be recommended to alleviate cardiotoxicity. This review explores the complex mechanisms of doxorubicin-induced heart inflammation and fibrosis, identifies possible cellular and molecular targets, and investigates potential substances that could help reduce these harmful effects.
Collapse
Affiliation(s)
- Linghua Song
- Department of Pharmacy, Yantai Mountain Hospital, Yantai City, Shandong Province, 264001, China
| | - Qingzhuo Qiu
- Medical Imaging Department of Qingdao Women and Children's Hospital, 266000, China
| | - Fei Ju
- Department of Critical Care, Medicine East Hospital of Qingdao Municipal Hospital, 266000, China
| | - Chunyan Zheng
- Cadre Health Office of Zibo Central Hospital in Shandong Province, 255000, China.
| |
Collapse
|
2
|
Fibbi G, Sato R, Vatic M, Genreith FP, von Haehling S. Pharmacological management of heart failure: a patient-centred approach. Expert Opin Pharmacother 2024; 25:2151-2165. [PMID: 39434709 DOI: 10.1080/14656566.2024.2418414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Heart failure (HF) is a global health challenge that requires a multidisciplinary approach. Despite recent advances in pharmacological and interventional therapy, morbidity and mortality in these patients remain high. For this reason, and because of its interplay with other cardiovascular and non-cardiovascular diseases, HF represents a major area of research, with new trials being published every year and international guidelines constantly updated. AREAS COVERED The authors review the current status and possible future developments in HF pharmacotherapy. EXPERT OPINION The treatment of HF has made significant advances in recent years, and the current recommendations are based on large outcome trials. This has led to significant reductions in both mortality and morbidity, but the death rate remains unacceptably high. In this context, a patient-centered approach that considers comorbidities and specific clinical scenarios when dosing HF medication is essential. Prevention of hospital admissions for cardiac decompensation is of utmost importance in patients with HF as is the enablement of activities of daily living, an endpoint which has only recently been incorporated into major HF trials.
Collapse
Affiliation(s)
- Guglielmo Fibbi
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Ryosuke Sato
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Mirela Vatic
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Frederik Pascal Genreith
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Guelfi G, Venanzi N, Capaccia C, Stefanetti V, Brachelente C, Sforna M, Porciello F, Lepri E. Feline hypertrophic cardiomyopathy: Does the microRNA-mRNA regulatory network contribute to heart sarcomeric protein remodelling? Int J Exp Pathol 2024; 105:170-183. [PMID: 39138588 PMCID: PMC11574647 DOI: 10.1111/iep.12514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Feline primary hypertrophic cardiomyopathy (HCM) is an intrinsic myocardial disease characterized by concentric hypertrophy of the left ventricle. In the present study, we investigated the microRNA-mRNA regulatory network in feline myocardial tissue affected by primary (HCMI) and secondary HCM (HCMII). MRNA expression levels of sarcomeric genes, including, TNNT2, TNNI3, MYH7, MYBPC3, TPM1 and ACTC1 were assessed in the FFPE myocardial tissues. FFPE tissues from healthy cats were sequenced by the NGS, to explore, in the entire non-deposited miRNome, the expression level of microRNAs targeting the complementary sequences of selected sarcomeric mRNAs. The sarcomeric genes TNNT2, MYH7, MYBPC3 and TPM1 showed a statistically significant upregulation in HCMI compared to HCMII (p < .01), except ACTC1 which was downregulated (p < .01); TNNI3 showed no statistically significant difference. In HCMII miR-122-5p, miR-338-3p, miR-484, miR-370-3p, miR-92b-3p, miR-375 and miR-370-3p showed a significant upregulation (p < .01) compared to control. The exception was miR-30a-5p which showed downregulation. Worthy of note is the 4-fold higher expression of miR-370-3p, a key regulator of MYBPC3, in HMCI compared to HMCII. This research does not solve the aetiological mystery of HCM, but it may help to find a way to help diagnose and define the prognosis of HCM in cats.
Collapse
Affiliation(s)
- Gabriella Guelfi
- Department of Veterinary Medicine, Università Degli Studi di Perugia, Perugia, Italy
| | - Noemi Venanzi
- Department of Veterinary Medicine, Università Degli Studi di Perugia, Perugia, Italy
| | - Camilla Capaccia
- Department of Veterinary Medicine, Università Degli Studi di Perugia, Perugia, Italy
| | - Valentina Stefanetti
- Department of Veterinary Medicine, Università Degli Studi di Perugia, Perugia, Italy
| | - Chiara Brachelente
- Department of Veterinary Medicine, Università Degli Studi di Perugia, Perugia, Italy
| | - Monica Sforna
- Department of Veterinary Medicine, Università Degli Studi di Perugia, Perugia, Italy
| | - Francesco Porciello
- Department of Veterinary Medicine, Università Degli Studi di Perugia, Perugia, Italy
| | - Elvio Lepri
- Department of Veterinary Medicine, Università Degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
4
|
Famurewa AC, George MY, Ukwubile CA, Kumar S, Kamal MV, Belle VS, Othman EM, Pai SRK. Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity-a review of literature evidence. Biometals 2024:10.1007/s10534-024-00637-7. [PMID: 39347848 DOI: 10.1007/s10534-024-00637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki, Ebonyi, Nigeria.
- Centre for Natural Products Discovery, School of P harmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cletus A Ukwubile
- Department of Pharmacognosy, Faculty of Pharmacy, University of Maiduguri, Bama Road, Maiduguri, Borno, Nigeria
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mehta V Kamal
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vijetha S Belle
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Cancer Therapy Research Center, Department of Biochemistry-I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, BiocenterWürzburg, Germany
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
5
|
Telesca M, De Angelis A, Donniacuo M, Bellocchio G, Riemma MA, Mele E, Canonico F, Cianflone E, Torella D, D'Amario D, Patti G, Liantonio A, Imbrici P, De Luca A, Castaldo G, Rossi F, Cappetta D, Urbanek K, Berrino L. Effects of sacubitril-valsartan on aging-related cardiac dysfunction. Eur J Pharmacol 2024; 978:176794. [PMID: 38968980 DOI: 10.1016/j.ejphar.2024.176794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Heart failure (HF) remains a huge medical burden worldwide, with aging representing a major risk factor. Here, we report the effects of sacubitril/valsartan, an approved drug for HF with reduced EF, in an experimental model of aging-related HF with preserved ejection fraction (HFpEF). Eighteen-month-old female Fisher 344 rats were treated for 12 weeks with sacubitril/valsartan (60 mg/kg/day) or with valsartan (30 mg/kg/day). Three-month-old rats were used as control. No differential action of sacubitril/valsartan versus valsartan alone, either positive or negative, was observed. The positive effects of both sacubitril/valsartan and valsartan on cardiac hypertrophy was evidenced by a significant reduction of wall thickness and myocyte cross-sectional area. Contrarily, myocardial fibrosis in aging heart was not reduced by any treatment. Doppler echocardiography and left ventricular catheterization evidenced diastolic dysfunction in untreated and treated old rats. In aging rats, both classical and non-classical renin-angiotensin-aldosterone system (RAAS) were modulated. In particular, with respect to untreated animals, both sacubitril/valsartan and valsartan showed a partial restoration of cardioprotective non-classical RAAS. In conclusion, this study evidenced the favorable effects, by both treatments, on age-related cardiac hypertrophy. The attenuation of cardiomyocyte size and hypertrophic response may be linked to a shift towards cardioprotective RAAS signaling. However, diastolic dysfunction and cardiac fibrosis persisted despite of treatment and were accompanied by myocardial inflammation, endothelial activation, and oxidative stress.
Collapse
Affiliation(s)
- Marialucia Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Francesco Canonico
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Domenico D'Amario
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy.
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
6
|
Boen HM, Cherubin M, Franssen C, Gevaert AB, Witvrouwen I, Bosman M, Guns PJ, Heidbuchel H, Loeys B, Alaerts M, Van Craenenbroeck EM. Circulating MicroRNA as Biomarkers of Anthracycline-Induced Cardiotoxicity: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:183-199. [PMID: 38774014 PMCID: PMC11103047 DOI: 10.1016/j.jaccao.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 05/24/2024] Open
Abstract
Close monitoring for cardiotoxicity during anthracycline chemotherapy is crucial for early diagnosis and therapy guidance. Currently, monitoring relies on cardiac imaging and serial measurement of cardiac biomarkers like cardiac troponin and natriuretic peptides. However, these conventional biomarkers are nonspecific indicators of cardiac damage. Exploring new, more specific biomarkers with a clear link to the underlying pathomechanism of cardiotoxicity holds promise for increased specificity and sensitivity in detecting early anthracycline-induced cardiotoxicity. miRNAs (microRNAs), small single-stranded, noncoding RNA sequences involved in epigenetic regulation, influence various physiological and pathological processes by targeting expression and translation. Emerging as new biomarker candidates, circulating miRNAs exhibit resistance to degradation and offer a direct pathomechanistic link. This review comprehensively outlines their potential as early biomarkers for cardiotoxicity and their pathomechanistic link.
Collapse
Affiliation(s)
- Hanne M. Boen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Martina Cherubin
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Andreas B. Gevaert
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Isabel Witvrouwen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Maaike Alaerts
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Emeline M. Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
7
|
Adamcova M, Parova H, Lencova-Popelova O, Kollarova-Brazdova P, Baranova I, Slavickova M, Stverakova T, Mikyskova PS, Mazurova Y, Sterba M. Cardiac miRNA expression during the development of chronic anthracycline-induced cardiomyopathy using an experimental rabbit model. Front Pharmacol 2024; 14:1298172. [PMID: 38235109 PMCID: PMC10791979 DOI: 10.3389/fphar.2023.1298172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Background: Anthracycline cardiotoxicity is a well-known complication of cancer treatment, and miRNAs have emerged as a key driver in the pathogenesis of cardiovascular diseases. This study aimed to investigate the expression of miRNAs in the myocardium in early and late stages of chronic anthracycline induced cardiotoxicity to determine whether this expression is associated with the severity of cardiac damage. Method: Cardiotoxicity was induced in rabbits via daunorubicin administration (daunorubicin, 3 mg/kg/week; for five and 10 weeks), while the control group received saline solution. Myocardial miRNA expression was first screened using TaqMan Advanced miRNA microfluidic card assays, after which 32 miRNAs were selected for targeted analysis using qRT-PCR. Results: The first subclinical signs of cardiotoxicity (significant increase in plasma cardiac troponin T) were observed after 5 weeks of daunorubicin treatment. At this time point, 10 miRNAs (including members of the miRNA-34 and 21 families) showed significant upregulation relative to the control group, with the most intense change observed for miRNA-1298-5p (29-fold change, p < 0.01). After 10 weeks of daunorubicin treatment, when a further rise in cTnT was accompanied by significant left ventricle systolic dysfunction, only miR-504-5p was significantly (p < 0.01) downregulated, whereas 10 miRNAs were significantly upregulated relative to the control group; at this time-point, the most intense change was observed for miR-34a-5p (76-fold change). Strong correlations were found between the expression of multiple miRNAs (including miR-34 and mir-21 family and miR-1298-5p) and quantitative indices of toxic damage in both the early and late phases of cardiotoxicity development. Furthermore, plasma levels of miR-34a-5p were strongly correlated with the myocardial expression of this miRNA. Conclusion: To the best of our knowledge, this is the first study that describes alterations in miRNA expression in the myocardium during the transition from subclinical, ANT-induced cardiotoxicity to an overt cardiotoxic phenotype; we also revealed how these changes in miRNA expression are strongly correlated with quantitative markers of cardiotoxicity.
Collapse
Affiliation(s)
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | | | | | - Ivana Baranova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Marcela Slavickova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Tereza Stverakova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Petra Sauer Mikyskova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Yvona Mazurova
- Department of Histology and Embryology, Charles University in Prague, Hradec Kralove, Czechia
| | | |
Collapse
|
8
|
Mohamed HE, Askar ME, Shaheen MA, Salama AE, Idris RA, Younis NN. Infliximab substantially re-silenced Wnt/β-catenin signaling and ameliorated doxorubicin-induced cardiomyopathy in rats. J Biochem Mol Toxicol 2023; 37:e23312. [PMID: 36636964 DOI: 10.1002/jbt.23312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/19/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
The release of inflammatory cytokines, namely tumor necrosis factor-α (TNF-α), plays an important role in the pathogenesis of cardiomyopathy. TNF-α increases in plasma and in myocardium of heart failure patients. We aimed to investigate the role of TNF-α inhibitor (infliximab; IFX) in regulating dilated cardiomyopathy (DCM) induced in rats. DCM was induced in rats by doxorubicin (DOX; 3.5 mg. kg-1 , i.p) twice weekly for 3 weeks (21 mg. kg-1 cumulative dose). DCM rats were treated with RPL (1 mg. kg-1 orally, daily), IFX (5 mg. kg-1 ; i.p. once) or their combination for 4 weeks starting next day of last DOX dose. Echocardiography was conducted followed by a collection of blood and left ventricle (LV) for biochemical and histological investigations. DCM rats revealed deteriorated cardiac function (increased CK-MB activity, LVIDs, LVIDd, ESV, and EDV, while decreased EF% and FS%), hypertrophy (increased HW/TL, β-MHC, and α-actin), inflammation (increased IL-1β, IL-6, and TNF-α). The activation of Wnt/β-catenin along with increased gene expression of RAS components (RENIN, ACE, and AT1) were evident. LV architecture also revealed abnormalities and some degree of fibrosis. Treatment with RPL and/or IFX suppressed TNF-α and consequently improved most of these parameters suppressing Wnt/β-catenin/RAS axis. Combined RPL and IFX treatment was the best among all treatments. In conclusion, Wnt/β-catenin/RAS axis is implicated in DOX-induced cardiomyopathy. The upstream TNF-α was proved for the first time in-vivo to stimulate this axis where its inhibition by RPL or IFX prevented DCM. Targeting this axis at two points using RPL and IFX showed better therapeutic efficacy.
Collapse
Affiliation(s)
- Hoda E Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mervat E Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Alaa E Salama
- Department of Cardiology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Reham A Idris
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Kuang Z, Wu J, Tan Y, Zhu G, Li J, Wu M. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules 2023; 13:biom13030568. [PMID: 36979503 PMCID: PMC10046787 DOI: 10.3390/biom13030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Doxorubicin (DOX), a broad-spectrum chemotherapy drug, is widely applied to the treatment of cancer; however, DOX-induced cardiotoxicity (DIC) limits its clinical therapeutic utility. However, it is difficult to monitor and detect DIC at an early stage using conventional detection methods. Thus, sensitive, accurate, and specific methods of diagnosis and treatment are important in clinical practice. MicroRNAs (miRNAs) belong to non-coding RNAs (ncRNAs) and are stable and easy to detect. Moreover, miRNAs are expected to become biomarkers and therapeutic targets for DIC; thus, there are currently many studies focusing on the role of miRNAs in DIC. In this review, we list the prominent studies on the diagnosis and treatment of miRNAs in DIC, explore the feasibility and difficulties of using miRNAs as diagnostic biomarkers and therapeutic targets, and provide recommendations for future research.
Collapse
Affiliation(s)
- Ziyu Kuang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingyuan Wu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Tan
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guanghui Zhu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Min Wu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
10
|
Li C, Meng X, Wang L, Dai X. Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: Focus on the TGF-β/Smad signaling pathway. Front Pharmacol 2023; 14:1092148. [PMID: 36843918 PMCID: PMC9947662 DOI: 10.3389/fphar.2023.1092148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Cardiac fibrosis is a serious public health problem worldwide that is closely linked to progression of many cardiovascular diseases (CVDs) and adversely affects both the disease process and clinical prognosis. Numerous studies have shown that the TGF-β/Smad signaling pathway plays a key role in the progression of cardiac fibrosis. Therefore, targeted inhibition of the TGF-β/Smad signaling pathway may be a therapeutic measure for cardiac fibrosis. Currently, as the investigation on non-coding RNAs (ncRNAs) move forward, a variety of ncRNAs targeting TGF-β and its downstream Smad proteins have attracted high attention. Besides, Traditional Chinese Medicine (TCM) has been widely used in treating the cardiac fibrosis. As more and more molecular mechanisms of natural products, herbal formulas, and proprietary Chinese medicines are revealed, TCM has been proven to act on cardiac fibrosis by modulating multiple targets and signaling pathways, especially the TGF-β/Smad. Therefore, this work summarizes the roles of TGF-β/Smad classical and non-classical signaling pathways in the cardiac fibrosis, and discusses the recent research advances in ncRNAs targeting the TGF-β/Smad signaling pathway and TCM against cardiac fibrosis. It is hoped, in this way, to give new insights into the prevention and treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Chunjun Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangxiang Meng
- College of Marxism, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lina Wang
- First College of Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Dai
- College of Health, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Xia Dai,
| |
Collapse
|
11
|
Yarmohammadi F, Ebrahimian Z, Karimi G. MicroRNAs target the PI3K/Akt/p53 and the Sirt1/Nrf2 signaling pathways in doxorubicin-induced cardiotoxicity. J Biochem Mol Toxicol 2023; 37:e23261. [PMID: 36416353 DOI: 10.1002/jbt.23261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/06/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Doxorubicin (DOX) is used as a chemotherapeutic agent in the treatment of solid tumors. Irreversible cardiotoxicity is the major limitation in the clinical use of DOX. Several microRNAs (miRNAs) with diversified functions are identified that participate in exacerbating or suppressing DOX-induced cardiac damage. The miRNAs are small noncoding regulatory RNAs that modify the expression of the native genes. Studies have demonstrated that miRNAs by modifying the expression of proteins such as PTEN, Akt, and survivin can affect DOX-induced cardiac apoptosis. Moreover, miRNAs can modulate cardiac oxidative stress in DOX treatment through the posttranscriptional regulation of Sirt1, p66shc, and Nrf2 expressions. This manuscript has reviewed the regulation of the PI3K/Akt/p53 and the Sirt1/Nrf2 pathways by miRNAs in DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zainab Ebrahimian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Wu C, Bao S, Li R, Sun H, Peng Y. Noncoding RNAs and Cardiac Fibrosis. Rev Cardiovasc Med 2023; 24:63. [PMID: 39077397 PMCID: PMC11273127 DOI: 10.31083/j.rcm2402063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 07/31/2024] Open
Abstract
Myocardial fibrosis is a common pathological feature of various terminal cardiovascular diseases. Progressive fibrosis is the pathological basis for the development and progression of many cardiac arrhythmias and heart failure. There are no effective reversal drugs for myocardial fibrosis due to the lack of understanding of the molecular mechanisms. Noncoding RNAs, a class of RNAs that do not function in coding proteins, have been found to be intimately involved in the life cycle of cardiomyocyte differentiation, transcription and apoptosis and are important regulators of cardiovascular disease. An increasing number of studies have shown that noncoding RNAs regulate the proliferation and transformation of cardiac fibroblasts through related signaling pathways and can be used as potential biomarkers and novel therapeutic targets for cardiac fibrosis. This article reviews the relationship between noncoding RNAs and cardiac fibrosis.
Collapse
Affiliation(s)
- Changyong Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650000 Kunming, Yunnan, China
| | - Suli Bao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650000 Kunming, Yunnan, China
| | - Ruijie Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650000 Kunming, Yunnan, China
| | - Huang Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650000 Kunming, Yunnan, China
| | - Yunzhu Peng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 650000 Kunming, Yunnan, China
| |
Collapse
|
13
|
Kawano I, Adamcova M. MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response. Front Pharmacol 2022; 13:1055911. [PMID: 36479202 PMCID: PMC9720152 DOI: 10.3389/fphar.2022.1055911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 10/17/2023] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug widely used for cancer treatment, but its use is limited by cardiotoxicity. Although free radicals from redox cycling and free cellular iron have been predominant as the suggested primary pathogenic mechanism, novel evidence has pointed to topoisomerase II inhibition and resultant genotoxic stress as the more fundamental mechanism. Recently, a growing list of microRNAs (miRNAs) has been implicated in DOX-induced cardiotoxicity (DIC). This review summarizes miRNAs reported in the recent literature in the context of DIC. A particular focus is given to miRNAs that regulate cellular responses downstream to DOX-induced DNA damage, especially p53 activation, pro-survival signaling pathway inhibition (e.g., AMPK, AKT, GATA-4, and sirtuin pathways), mitochondrial dysfunction, and ferroptosis. Since these pathways are potential targets for cardioprotection against DOX, an understanding of how miRNAs participate is necessary for developing future therapies.
Collapse
Affiliation(s)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| |
Collapse
|
14
|
Lv XF, Wen RQ, Liu K, Zhao XK, Pan CL, Gao X, Wu X, Zhi XD, Ren CZ, Chen QL, Lu WJ, Bai TY, Li YD. Role and molecular mechanism of traditional Chinese medicine in preventing cardiotoxicity associated with chemoradiotherapy. Front Cardiovasc Med 2022; 9:1047700. [PMID: 36419486 PMCID: PMC9678083 DOI: 10.3389/fcvm.2022.1047700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/20/2022] [Indexed: 08/12/2023] Open
Abstract
Cardiotoxicity is a serious complication of cancer therapy. It is the second leading cause of morbidity and mortality in cancer survivors and is associated with a variety of factors, including oxidative stress, inflammation, apoptosis, autophagy, endoplasmic reticulum stress, and abnormal myocardial energy metabolism. A number of studies have shown that traditional Chinese medicine (TCM) can mitigate chemoradiotherapy-associated cardiotoxicity via these pathways. Therefore, this study reviews the effects and molecular mechanisms of TCM on chemoradiotherapy-related cardiotoxicity. In this study, we searched PubMed for basic studies on the anti-cardiotoxicity of TCM in the past 5 years and summarized their results. Angelica Sinensis, Astragalus membranaceus Bunge, Danshinone IIA sulfonate sodium (STS), Astragaloside (AS), Resveratrol, Ginsenoside, Quercetin, Danggui Buxue Decoction (DBD), Shengxian decoction (SXT), Compound Danshen Dripping Pill (CDDP), Qishen Huanwu Capsule (QSHWC), Angelica Sinensis and Astragalus membranaceus Bunge Ultrafiltration Extract (AS-AM),Shenmai injection (SMI), Xinmailong (XML), and nearly 60 other herbs, herbal monomers, herbal soups and herbal compound preparations were found to be effective as complementary or alternative treatments. These preparations reduced chemoradiotherapy-induced cardiotoxicity through various pathways such as anti-oxidative stress, anti-inflammation, alleviating endoplasmic reticulum stress, regulation of apoptosis and autophagy, and improvement of myocardial energy metabolism. However, few clinical trials have been conducted on these therapies, and these trials can provide stronger evidence-based support for TCM.
Collapse
Affiliation(s)
- Xin-Fang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Ruo-Qing Wen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin-Ke Zhao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chen-Liang Pan
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xue Wu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Xiao-Dong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chun-Zhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Qi-Lin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Wei-Jie Lu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Ting-Yan Bai
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Ying-Dong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
15
|
MicroRNA-4732-3p Is Dysregulated in Breast Cancer Patients with Cardiotoxicity, and Its Therapeutic Delivery Protects the Heart from Doxorubicin-Induced Oxidative Stress in Rats. Antioxidants (Basel) 2022; 11:antiox11101955. [PMID: 36290678 PMCID: PMC9599023 DOI: 10.3390/antiox11101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Anthracycline-induced cardiotoxicity is the most severe collateral effect of chemotherapy originated by an excess of oxidative stress in cardiomyocytes that leads to cardiac dysfunction. We assessed clinical data from patients with breast cancer receiving anthracyclines and searched for discriminating microRNAs between patients that developed cardiotoxicity (cases) and those that did not (controls), using RNA sequencing and regression analysis. Serum levels of 25 microRNAs were differentially expressed in cases versus controls within the first year after anthracycline treatment, as assessed by three different regression models (elastic net, Robinson and Smyth exact negative binomial test and random forest). MiR-4732-3p was the only microRNA identified in all regression models and was downregulated in patients that experienced cardiotoxicity. MiR-4732-3p was also present in neonatal rat cardiomyocytes and cardiac fibroblasts and was modulated by anthracycline treatment. A miR-4732-3p mimic was cardioprotective in cardiac and fibroblast cultures, following doxorubicin challenge, in terms of cell viability and ROS levels. Notably, administration of the miR-4732-3p mimic in doxorubicin-treated rats preserved cardiac function, normalized weight loss, induced angiogenesis, and decreased apoptosis, interstitial fibrosis and cardiac myofibroblasts. At the molecular level, miR-4732-3p regulated genes of TGFβ and Hippo signaling pathways. Overall, the results indicate that miR-4732-3p is a novel biomarker of cardiotoxicity that has therapeutic potential against anthracycline-induced heart damage.
Collapse
|
16
|
Zhou Y, Feng Y, Yang L, Zheng P, Hang L, Jiang F, Yuan J, Zhu L. High-fat diet combined with dextran sulfate sodium failed to induce a more serious NASH phenotype than high-fat diet alone. Front Pharmacol 2022; 13:1022172. [PMID: 36238563 PMCID: PMC9551200 DOI: 10.3389/fphar.2022.1022172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Aims: Animal models are essential tools to investigate the pathogenesis of diseases. Disruption in the intestinal epithelial barrier and gut vascular barrier is an early event in the development of non-alcoholic fatty liver disease (NAFLD). Intestinal epithelial barrier can be destroyed by dextran sulfate sodium (DSS) oral administration. High fat diet (HFD)-induced non-alcoholic steatohepatitis (NASH) rat model has been widely used. Recently, the combination of HFD with DSS induced NASH model has also been reported. The present study aimed to evaluate whether this composite NASH animal model is more ideal than that induced by HFD alone. Methods: Rats were divided into control, HFD and HFD combined with DSS (DSS + HFD) groups. They were fed with routine diet, high-fat diet, and HFD combined with DSS drinking, respectively, for 22 weeks. Histopathological analysis (HE staining, Oil-Red O staining, Masson staining), lipid parameters testing (TG, TC, GLU, NEFA, TRIG, LDL, HDL), testing on indicators of inflammation (TNF-α, ALT, AST, ALP, LDH) and oxidative stress (MDA, SOD, CAT) were performed. Results: Rats in HFD and DSS + HFD group displayed increase in the body weight, liver weight, lipids accumulation and the levels of TNF-α, ALT, AST, ALP, MDA in serum and liver accompanied with impaired glucose tolerance, obvious hepatitis, and decreased levels of SOD and CAT in serum and liver compared to those in control group. Moreover, in the DSS + HFD group, but not in the HFD group, proliferation of fibrous tissue in the portal area and the hepatic lobules was found. Conclusion: The addition of DSS on high-fat diet did not exacerbate lipid accumulation and inflammation, but induced NASH-related liver fibrosis.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya Feng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Hang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengru Jiang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jianye Yuan, ; Lixin Zhu,
| | - Lixin Zhu
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jianye Yuan, ; Lixin Zhu,
| |
Collapse
|
17
|
Sun W, Xu J, Wang L, Jiang Y, Cui J, Su X, Yang F, Tian L, Si Z, Xing Y. Non-coding RNAs in cancer therapy-induced cardiotoxicity: Mechanisms, biomarkers, and treatments. Front Cardiovasc Med 2022; 9:946137. [PMID: 36082126 PMCID: PMC9445363 DOI: 10.3389/fcvm.2022.946137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
As a result of ongoing breakthroughs in cancer therapy, cancer patients' survival rates have grown considerably. However, cardiotoxicity has emerged as the most dangerous toxic side effect of cancer treatment, negatively impacting cancer patients' prognosis. In recent years, the link between non-coding RNAs (ncRNAs) and cancer therapy-induced cardiotoxicity has received much attention and investigation. NcRNAs are non-protein-coding RNAs that impact gene expression post-transcriptionally. They include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In several cancer treatments, such as chemotherapy, radiotherapy, and targeted therapy-induced cardiotoxicity, ncRNAs play a significant role in the onset and progression of cardiotoxicity. This review focuses on the mechanisms of ncRNAs in cancer therapy-induced cardiotoxicity, including apoptosis, mitochondrial damage, oxidative stress, DNA damage, inflammation, autophagy, aging, calcium homeostasis, vascular homeostasis, and fibrosis. In addition, this review explores potential ncRNAs-based biomarkers and therapeutic strategies, which may help to convert ncRNAs research into clinical practice in the future for early detection and improvement of cancer therapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wanli Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juping Xu
- The Second People's Hospital of Jiaozuo, Jiaozuo, China
| | - Li Wang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, China
| | - Yuchen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingrun Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Si
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Taiyuan, China
- Zeyu Si
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanwei Xing
| |
Collapse
|
18
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Branicki W, Taheri M, Eghbali A. Emerging Role of Non-Coding RNAs in Senescence. Front Cell Dev Biol 2022; 10:869011. [PMID: 35865636 PMCID: PMC9294638 DOI: 10.3389/fcell.2022.869011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Senescence is defined as a gradual weakening of functional features of a living organism. Cellular senescence is a process that is principally aimed to remove undesirable cells by prompting tissue remodeling. This process is also regarded as a defense mechanism induced by cellular damage. In the course of oncogenesis, senescence can limit tumor progression. However, senescence participates in the pathoetiology of several disorders such as fibrotic disorders, vascular disorders, diabetes, renal disorders and sarcopenia. Recent studies have revealed contribution of different classes of non-coding RNAs in the cellular senescence. Long non-coding RNAs, microRNAs and circular RNAs are three classes of these transcripts whose contributions in this process have been more investigated. In the current review, we summarize the available literature on the impact of these transcripts in the cellular senescence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
19
|
Wang Z, Gao J, Xu C. Tackling cellular senescence by targeting miRNAs. Biogerontology 2022; 23:387-400. [PMID: 35727469 DOI: 10.1007/s10522-022-09972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Cellular senescence, which is characterized by permanent proliferation arrest, has become an important target for the amelioration of various human diseases. The activity of senescent cells is mainly related to the senescence-associated secretory phenotype (SASP). The SASP can cause chronic inflammation in local tissues and organs through autocrine and paracrine mechanisms, and a series of factors secreted by senescent cells can deteriorate the cellular microenvironment, promoting tumor formation and exacerbating aging-related diseases. Therefore, avoiding the promotion of cancer is an urgent problem. In recent years, increased attention has been given to the mechanistic study of microRNAs in senescence. As important posttranscriptional regulators, microRNAs possess unique tissue-specific expression in senescence. MicroRNAs can regulate the SASP by regulating proteins in the senescence signaling pathway, the reverse transcriptase activity of telomerase, the generation of reactive oxygen species and oxidative damage to mitochondria. Numerous studies have confirmed that removing senescent cells does not cause significant side effects, which also opens the door to the development of treatment modalities against senescent cells. Herein, this review discusses the double-edged sword of cellular senescence in tumors and aging-related diseases and emphasizes the roles of microRNAs in regulating the SASP, especially the potential of microRNAs to be used as therapeutic targets to inhibit senescence, giving rise to novel therapeutic approaches for the treatment of aging-associated diseases.
Collapse
Affiliation(s)
- Zehua Wang
- Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Jianwen Gao
- School of Medical Engineering, Ma'anshan University, No. 8, Huangchi Road, Gushu Town, Dangtu County, Ma'anshan, 243100, Anhui, China. .,Major of Biotechnological Pharmaceutics, Shanghai Pharmaceutical School, Shanghai, 200135, China.
| | - Congjian Xu
- Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, China
| |
Collapse
|
20
|
Zhang J, Cui J, Wang Y, Lin X, Teng X, Tang Y. Complex molecular mechanism of ammonia-induced apoptosis in chicken peripheral blood lymphocytes: miR-27b-3p, heat shock proteins, immunosuppression, death receptor pathway, and mitochondrial pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113471. [PMID: 35378398 DOI: 10.1016/j.ecoenv.2022.113471] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Ammonia gas, a toxic environmental pollutant, is a vital component of PM2.5 aerosols, and can decrease human and animal immunity. Peripheral blood lymphocytes (PBLs) are main immune cells. Nevertheless, poisoning mechanism of PBLs under ammonia exposure remains unclear. Here, we established an ammonia poisoning model of chicken PBLs to explore poisoning mechanism of ammonia-caused apoptosis in chicken PBLs. Cell viability and apoptosis rate were detected using CCK8 assay and flow cytometry, respectively. Mitochondrial membrane potential (MMP) was observed using fluorescent staining. In addition, qRT-PCR was performed to measure mRNA levels of apoptosis-related genes (tumor necrosis factor-α (TNF-α), tumor necrosis factor receptor 1 (TNFR1), TNF receptor-associated death domain (TRADD), Fas-associated death domain (FADD), Caspase-8, BH3-interacting domain death agonist (Bid), Bcl-2-associated X protein (Bax), Bcl-2 homologous antagonist/killer (Bak), B-cell lymphoma-2 (Bcl-2), Cytochrome-c (Cytc), apoptotic protease activating factor-1 (APAF1), Caspase-9, and Caspase-3), immune-related genes (interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4, IL-6, IL-1β, IL-10, transforming growth factor-β1 (TGF-β1), IL-17, IL-21, and IL-22), heat shock protein (HSP) genes (HSP25, HSP40, HSP60, HSP70, HSP90, and HSP110), as well as miR-27b-3p. Western blot was used to determine protein levels of apoptosis-related factors (TNF-α, Caspase-8, Bcl-2, Caspase-9, and Caspase-3), as well as HSPs (HSP40, HSP60, HSP70, and HSP90). The results indicated that TRADD, FADD, and APAF1 were target genes of miR-27b-3p, as well as miR-27b-3p participated in molecular mechanism of apoptosis through targeting TNF-α/TNFR1/Caspase-8 death receptor pathway-triggered Bid/Cytc/Caspase-9 mitochondrial pathway in ammonia-treated chicken PBLs. In addition, our findings demonstrated that excess ammonia led to immunosuppression via Th1/Th2 imbalance and Treg/Th17 imbalance. Simultaneously, ammonia stress activated HSPs. In summary, for the first time, our data demonstrated that HSPs-triggered immunosuppression led to apoptosis under ammonia exposure. Our findings provided a new insight into molecular mechanism of ammonia poisoning and an important reference for environmental risk assessment related to ammonia.
Collapse
Affiliation(s)
- Jingyang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yueyang Wang
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Xu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - You Tang
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin 132101, People's Republic of China.
| |
Collapse
|
21
|
Li H, Zhan J, Chen C, Wang D. MicroRNAs in cardiovascular diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:140-168. [PMID: 37724243 PMCID: PMC10471109 DOI: 10.1515/mr-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/29/2021] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and disability worldwide, despite the wide diversity of molecular targets identified and the development of therapeutic methods. MicroRNAs (miRNAs) are a class of small (about 22 nucleotides) non-coding RNAs (ncRNAs) that negatively regulate gene expression at the post-transcriptional level in the cytoplasm and play complicated roles in different CVDs. While miRNA overexpression in one type of cell protects against heart disease, it promotes cardiac dysfunction in another type of cardiac cell. Moreover, recent studies have shown that, apart from cytosolic miRNAs, subcellular miRNAs such as mitochondria- and nucleus-localized miRNAs are dysregulated in CVDs. However, the functional properties of cellular- and subcellular-localized miRNAs have not been well characterized. In this review article, by carefully revisiting animal-based miRNA studies in CVDs, we will address the regulation and functional properties of miRNAs in various CVDs. Specifically, the cell-cell crosstalk and subcellular perspective of miRNAs are highlighted. We will provide the background for attractive molecular targets that might be useful in preventing the progression of CVDs and heart failure (HF) as well as insights for future studies.
Collapse
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
22
|
Li DY, Gao FH, Wu CF, Liang ZJ, Xiong WH. miR-34a/SIRT1 Axis Plays a Critical Role in Regulating Chondrocyte Senescence in Type 2 Diabetes Mellitus. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2022; 7:1-7. [DOI: 10.14218/erhm.2021.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Luo F, Liu W, Bu H. MicroRNAs in hypertrophic cardiomyopathy: pathogenesis, diagnosis, treatment potential and roles as clinical biomarkers. Heart Fail Rev 2022; 27:2211-2221. [PMID: 35332416 DOI: 10.1007/s10741-022-10231-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 12/28/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiomyopathy and is characterized by increased left ventricular wall thickness, but existing diagnostic and treatment approaches face limitations. MicroRNAs (miRNAs) are type of noncoding RNA molecule that plays crucial roles in the pathological process of cardiac remodelling. Accordingly, miRNAs related to HCM may represent potential novel therapeutic targets. In this review, we first discuss the different roles of miRNAs in the development of HCM. We then summarize the roles of common miRNAs as diagnostic and clinical biomarkers in HCM. Finally, we outline current and future challenges and potential new directions for miRNA-based therapeutics for HCM.
Collapse
Affiliation(s)
- Fanyan Luo
- The Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- The Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haisong Bu
- The Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
24
|
MicroRNA-34a Promotes Ischemia-Induced Cardiomyocytes Apoptosis through Targeting Notch1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1388415. [PMID: 35265142 PMCID: PMC8901351 DOI: 10.1155/2022/1388415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Myocardial apoptosis occurs during myocardial ischemia. This study aimed to determine the effect of microRNA-34a (miR-34a) in ischemia-induced myocardial apoptosis. Mainly, SD rats were subjected to myocardial ischemia by ligaturing the left anterior descending branch of coronary artery. After rats had myocardial infarction, HE staining and TUNEL staining confirmed a significant increase in apoptosis. The expression of miR-34a was noticeably upregulated, while the expression of Notch1 was downregulated. An increase in caspase-3 and a decrease in Bcl-2/Bax ratio were observed in myocardium. Similar results were observed in the in vitro model of cardiomyocyte ischemia and anoxia of this study. When rat cardiomyocytes were administered with serum starvation and microaerophilic system, apoptosis-related proteins were significantly increased. However, transfecting the miR-34a inhibitor into the cardiomyocyte before the serum starvation and hypoxia treatment could increase the ratio of Bcl-2/Bax and downregulate the expression of caspase-3, as well as prevent cardiomyocytes from apoptosis. As opposed to the abovementioned points, the upregulation of miR-34a expression by transfecting miR-34a mimics induced Notch1 reduce and apoptosis-related proteins increase apparently, while upregulation of Notch1 could stimulate apoptosis attributed to miR-34a. Mechanistically, we demonstrated that Notch1 is a direct target of miR-34a. In conclusion, our current results suggested that miR-34a significantly stimulates ischemia-induced cardiomyocytes apoptosis by targeting Notch1.
Collapse
|
25
|
Desai VG, Vijay V, Lee T, Han T, Moland CL, Phanavanh B, Herman EH, Stine K, Fuscoe JC. MicroRNA-34a-5p as a promising early circulating preclinical biomarker of doxorubicin-induced chronic cardiotoxicity. J Appl Toxicol 2022; 42:1477-1490. [PMID: 35199358 DOI: 10.1002/jat.4309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/05/2022]
Abstract
Cardiotoxicity is a serious adverse effect of an anticancer drug, doxorubicin (DOX), which can occur within a year or decades after completion of therapy. The present study was designed to address a knowledge gap concerning a lack of circulating biomarkers capable of predicting the risk of cardiotoxicity induced by DOX. Profiling of 2083 microRNAs (miRNAs) in mouse plasma revealed 81 differentially expressed miRNAs one week after 6, 9, 12, 18, or 24 mg/kg total cumulative DOX doses (early-onset model) or saline (SAL). Among these, the expression of 7 miRNAs were altered prior to the onset of myocardial injury at 12 mg/kg and higher cumulative doses. The expression of only miR-34a-5p was significantly (FDR<0.1) elevated at all total cumulative doses compared to concurrent SAL-treated controls and showed a statistically significant dose-related response. The trend in plasma miR-34a-5p expression levels during DOX exposures also correlated with a significant dose-related increase in cardiac expression of miR-34a-5p in these mice. Administration of a cardioprotective drug, dexrazoxane, to mice before DOX treatment, significantly mitigated miR-34a-5p expression in both plasma and heart in conjunction with attenuation of cardiac pathology. This association between plasma and heart may suggest miR-34a-5p as a potential early circulating marker of early-onset DOX cardiotoxicity. In addition, higher expression of miR-34a-5p (FDR<0.1) in plasma and heart compared to SAL-treated controls 24 weeks after 24 mg/kg total cumulative DOX dose, when cardiac function was altered in our recently established delayed-onset cardiotoxicity model, indicated its potential as an early biomarker of delayed-onset cardiotoxicity.
Collapse
Affiliation(s)
- Varsha G Desai
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Vikrant Vijay
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Taewon Lee
- Division of Applied Mathematical Sciences, Korea University, Sejong, Korea
| | - Tao Han
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Carrie L Moland
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Bounleut Phanavanh
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Eugene H Herman
- Toxicology and Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, The National Cancer Institute, Rockville, MD
| | - Kimo Stine
- Department of Pediatrics, Pediatric Hematology-Oncology, Arkansas Children's Hospital, Little Rock, AR, USA
| | - James C Fuscoe
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
26
|
Hua CC, Liu XM, Liang LR, Wang LF, Zhong JC. Targeting the microRNA-34a as a Novel Therapeutic Strategy for Cardiovascular Diseases. Front Cardiovasc Med 2022; 8:784044. [PMID: 35155600 PMCID: PMC8828972 DOI: 10.3389/fcvm.2021.784044] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are still the main cause of morbidity and mortality worldwide and include a group of disorders varying from vasculature, myocardium, arrhythmias and cardiac development. MicroRNAs (miRs) are endogenous non-coding RNAs with 18–23 nucleotides that regulate gene expression. The miR-34 family, including miR-34a/b/c, plays a vital role in the regulation of myocardial physiology and pathophysiological processes. Recently, miR-34a has been implicated in cardiovascular fibrosis, dysfunction and related cardiovascular disorders as an essential regulator. Interestingly, there is a pivotal link among miR-34a, cardiovascular fibrosis, and Smad4/TGF-β1 signaling. Notably, both loss-of-function and gain-of-function approaches identified the critical roles of miR-34a in cardiovascular apoptosis, autophagy, inflammation, senescence and remodeling by modulating multifunctional signaling pathways. In this article, we focus on the current understanding of miR-34a in biogenesis, its biological effects and its implications for cardiac pathologies including myocardial infarction, heart failure, ischaemia reperfusion injury, cardiomyopathy, atherosclerosis, hypertension and atrial fibrillation. Thus, further understanding of the effects of miR-34a on cardiovascular diseases will aid the development of effective interventions. Targeting for miR-34a has emerged as a potential therapeutic target for cardiovascular dysfunction and related diseases.
Collapse
Affiliation(s)
- Cun-Cun Hua
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xin-Ming Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Li-Rong Liang
- Department of Clinical Epidemiology and Tobacco Dependence Treatment Research, Beijing Institute of Respiratory Medicine, Beijing, China
| | - Le-Feng Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jiu-Chang Zhong
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Clinical Epidemiology and Tobacco Dependence Treatment Research, Beijing Institute of Respiratory Medicine, Beijing, China
- Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
- Le-Feng Wang
| |
Collapse
|
27
|
Zhou H, Tang W, Yang J, Peng J, Guo J, Fan C. MicroRNA-Related Strategies to Improve Cardiac Function in Heart Failure. Front Cardiovasc Med 2021; 8:773083. [PMID: 34869689 PMCID: PMC8639862 DOI: 10.3389/fcvm.2021.773083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Heart failure (HF) describes a group of manifestations caused by the failure of heart function as a pump that supports blood flow through the body. MicroRNAs (miRNAs), as one type of non-coding RNA molecule, have crucial roles in the etiology of HF. Accordingly, miRNAs related to HF may represent potential novel therapeutic targets. In this review, we first discuss the different roles of miRNAs in the development and diseases of the heart. We then outline commonly used miRNA chemical modifications and delivery systems. Further, we summarize the opportunities and challenges for HF-related miRNA therapeutics targets, and discuss the first clinical trial of an antisense drug (CDR132L) in patients with HF. Finally, we outline current and future challenges and potential new directions for miRNA-based therapeutics for HF.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jun Peng
- Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jianjun Guo
- Hunan Fangsheng Pharmaceutical Co., Ltd. Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacology, Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Fangsheng Pharmaceutical Co., Ltd. Changsha, China
| |
Collapse
|
28
|
Multi-Systemic Alterations by Chronic Exposure to a Low Dose of Bisphenol A in Drinking Water: Effects on Inflammation and NAD +-Dependent Deacetylase Sirtuin1 in Lactating and Weaned Rats. Int J Mol Sci 2021; 22:ijms22189666. [PMID: 34575829 PMCID: PMC8467074 DOI: 10.3390/ijms22189666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
Bisphenol A (BPA) is largely used as a monomer in some types of plastics. It accumulates in tissues and fluids and is able to bypass the placental barrier, affecting various organs and systems. Due to huge developmental processes, children, foetuses, and neonates could be more sensitive to BPA-induced toxicity. To investigate the multi-systemic effects of chronic exposure to a low BPA dose (100 μg/L), pregnant Wistar rats were exposed to BPA in drinking water during gestation and lactation. At weaning, newborn rats received the same treatments as dams until sex maturation. Free and conjugated BPA levels were measured in plasma and adipose tissue; the size of cerebral ventricles was analysed in the brain; morpho-functional and molecular analyses were carried out in the liver with a focus on the expression of inflammatory cytokines and Sirtuin 1 (Sirt1). Higher BPA levels were found in plasma and adipose tissue from BPA treated pups (17 PND) but not in weaned animals. Lateral cerebral ventricles were significantly enlarged in lactating and weaned BPA-exposed animals. In addition, apart from microvesicular steatosis, liver morphology did not exhibit any statistically significant difference for morphological signs of inflammation, hypertrophy, or macrovesicular steatosis, but the expression of inflammatory cytokines, Sirt1, its natural antisense long non-coding RNA (Sirt1-AS LncRNA) and histone deacetylase 1 (Hdac1) were affected in exposed animals. In conclusion, chronic exposure to a low BPA dose could increase the risk for disease in adult life as a consequence of higher BPA circulating levels and accumulation in adipose tissue during the neonatal period.
Collapse
|
29
|
Andolina D, Savi M, Ielpo D, Barbetti M, Bocchi L, Stilli D, Ventura R, Lo Iacono L, Sgoifo A, Carnevali L. Elevated miR-34a expression and altered transcriptional profile are associated with adverse electromechanical remodeling in the heart of male rats exposed to social stress. Stress 2021; 24:621-634. [PMID: 34227918 DOI: 10.1080/10253890.2021.1942830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
This study investigated epigenetic risk factors that may contribute to stress-related cardiac disease in a rodent model. Experiment 1 was designed to evaluate the expression of microRNA-34a (miR-34a), a known modulator of both stress responses and cardiac pathophysiology, in the heart of male adult rats exposed to a single or repeated episodes of social defeat stress. Moreover, RNA sequencing was conducted to identify transcriptomic profile changes in the heart of repeatedly stressed rats. Experiment 2 was designed to assess cardiac electromechanical changes induced by repeated social defeat stress that may predispose rats to cardiac dysfunction. Results indicated a larger cardiac miR-34a expression after repeated social defeat stress compared to a control condition. This molecular modification was associated with increased vulnerability to pharmacologically induced arrhythmias and signs of systolic left ventricular dysfunction. Gene expression analysis identified clusters of differentially expressed genes in the heart of repeatedly stressed rats that are mainly associated with morphological and functional properties of the mitochondria and may be directly regulated by miR-34a. These results suggest the presence of an association between miR-34a overexpression and signs of adverse electromechanical remodeling in the heart of rats exposed to repeated social defeat stress, and point to compromised mitochondria efficiency as a potential mediator of this link. This rat model may provide a useful tool for investigating the causal relationship between miR-34a expression, mitochondrial (dys)function, and cardiac alterations under stressful conditions, which could have important implications in the context of stress-related cardiac disease.
Collapse
Affiliation(s)
- Diego Andolina
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donald Ielpo
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
| | - Margherita Barbetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rossella Ventura
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Luisa Lo Iacono
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Andrea Sgoifo
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Luca Carnevali
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| |
Collapse
|
30
|
Li D, Yang Y, Wang S, He X, Liu M, Bai B, Tian C, Sun R, Yu T, Chu X. Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol 2021; 46:102089. [PMID: 34364220 PMCID: PMC8350499 DOI: 10.1016/j.redox.2021.102089] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
As a potent chemotherapeutic agent, doxorubicin (DOX) is widely used for the treatment of a variety of cancers However, its clinical utility is limited by dose-dependent cardiotoxicity, and pathogenesis has traditionally been attributed to the formation of reactive oxygen species (ROS). Accordingly, the prevention of DOX-induced cardiotoxicity is an indispensable goal to optimize therapeutic regimens and reduce morbidity. Acetylation is an emerging and important epigenetic modification regulated by histone deacetylases (HDACs) and histone acetyltransferases (HATs). Despite extensive studies of the molecular basis and biological functions of acetylation, the application of acetylation as a therapeutic target for cardiotoxicity is in the initial stage, and further studies are required to clarify the complex acetylation network and improve the clinical management of cardiotoxicity. In this review, we summarize the pivotal functions of HDACs and HATs in DOX-induced oxidative stress, the underlying mechanisms, the contributions of noncoding RNAs (ncRNAs) and exercise-mediated deacetylases to cardiotoxicity. Furthermore, we describe research progress related to several important SIRT activators and HDAC inhibitors with potential clinical value for chemotherapy and cardiotoxicity. Collectively, a comprehensive understanding of specific roles and recent developments of acetylation in doxorubicin-induced cardiotoxicity will provide a basis for improved treatment outcomes in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, 266071, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Basic Medicine School, Qingdao University, 38 Deng Zhou Road, Qingdao, 266021, China.
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071, China.
| |
Collapse
|