1
|
Rajaramakrishna R, Damdee B, Kirdsiri K, Saiyasombat C, Kidkhunthod P, Kothan S, Kaewkhao J. Structural analysis of Eu3+ in Li2O-MO-B2O3-Eu2O3(M=Mg, Ca, Sr, Ba) glass using XANES and EXAFS. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Wang X, Jahanbazi F, Wei J, Segre CU, Chen W, Mao Y. Charge Transfer-Triggered Bi 3+ Near-Infrared Emission in Y 2Ti 2O 7 for Dual-Mode Temperature Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36834-36844. [PMID: 35921172 DOI: 10.1021/acsami.2c09361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trivalent bismuth is a popular main group ion showing versatile luminescent behaviors in a broad spectral range from ultraviolet to visible, but barely in the near-infrared (NIR) region. In this study, we have observed unexpected NIR emission at ∼744 nm in a Bi3+-doped pyrochlore, Y2Ti2O7 (YTOB). Our first-principles electronic structure calculation and analysis of the Bi local structure via extended X-ray absorption fine structure indicate that only Bi3+ species appears in YTOB and it has a similar local environment to that of Y3+. The NIR emission is assigned to a Ti4+ → Bi3+ metal-to-metal charge transfer process. Moreover, we have demonstrated dual-mode luminescence thermometry based on the luminescence intensity ratio (LIR) and lifetime (τ) in 0.5% Bi3+ and 0.5% Pr3+ co-doped Y2Ti2O7 (YTOB0.5P0.5). It exhibits high thermometric sensitivity simultaneously in the cryogenic temperature range from 78 to 298 K based on τ of the NIR emission of Bi3+ at 748 nm and in the temperature range of 278-378 K based on the LIR of Bi3+ to Pr3+ emissions (I748/I615). As a novel LIR-τ dual-mode thermometric material over a wide temperature range, the maximum relative sensitivities of the YTOB0.5P0.5 reach 3.53% K-1 at 298 K from the τ mode and 3.52% K-1 at 318 K based on the LIR mode. The dual-mode luminescence thermometry with high responsivity from our Bi3+-based pyrochlore Y2Ti2O7 phosphor opens a new avenue for more luminescent materials toward multi-mode thermometry applied in complex temperature-sensing conditions.
Collapse
Affiliation(s)
- Xianli Wang
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Forough Jahanbazi
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Jialiang Wei
- Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Carlo U Segre
- Center for Synchrotron Radiation Research and Instrumentation and Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Wei Chen
- Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
3
|
Fang MH, Bao Z, Huang WT, Liu RS. Evolutionary Generation of Phosphor Materials and Their Progress in Future Applications for Light-Emitting Diodes. Chem Rev 2022; 122:11474-11513. [DOI: 10.1021/acs.chemrev.1c00952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mu-Huai Fang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Zhen Bao
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
4
|
Gupta SK, Modak B, Tyagi M, Rawat NS, Modak P, Sudarshan K. Harvesting Light from BaHfO 3/Eu 3+ through Ultraviolet, X-ray, and Heat Stimulation: An Optically Multifunctional Perovskite. ACS OMEGA 2022; 7:5311-5323. [PMID: 35187346 PMCID: PMC8851442 DOI: 10.1021/acsomega.1c06474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/21/2022] [Indexed: 05/09/2023]
Abstract
Materials with optical multifunctionality such as photoluminescence (PL), radioluminescence, and thermoluminescence (TL) are a boon for a sustainable society. BaHfO3 (barium hafnium oxide [BHO]) under UV irradiation demonstrated visible PL endowed by oxygen vacancies (OVs). Eu3+ doping in BHO (BHOE) introduces f-state impurity levels just below the conduction band for both Eu@Ba and Eu@Hf sites, causing efficient host-to-dopant energy transfer, generating intense 5D0 → 7F1 magnetic dipole transitions (MDT) with internal quantum yield of ∼70%. X-ray photoelectron spectroscopy and electron paramagnetic resonance showed the formation of OVs in both BHO and BHOE samples with more vacancies in the doped sample. The positron lifetime measurements suggested that Eu3+ ions are distributed at both Ba2+ and Hf4+ sites. The association of OVs with Hf4+ and Eu3+ ions due to high charge/radius ratio is considered to be responsible for lowering the symmetry around Eu3+ ions to C 4v in BHOE. Density functional theory studies of defect formation energy justified the same. Time-resolved emission spectroscopy showed distinct spectra for Eu@Ba and Eu@Hf sites corresponding to symmetric and asymmetric environments, respectively. This could be highly relevant in designing color tunable phosphor by forcing dopant ions at one specific site because Eu@Ba displayed orange emission whereas Eu@Hf displayed red emission. We could further harness BHOE for X-ray scintillator application by designing a thin film, which showed efficient conversion of high-energy X-ray into visible light. Under beta irradiation; both BHO and BHOE showed distinct TL glow curves as shallow traps were formed in the former and deep traps in the latter, which could have long-term implications in harnessing this material for persistent luminescence. We believe that BHO/BHOE demonstrated an extraordinary credential as a perovskite for multifunctional applications in the area of defect-induced light emission, UV phosphor, X-ray scintillator, and TL crystals.
Collapse
Affiliation(s)
- Santosh Kumar Gupta
- Radiochemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Brindaban Modak
- Chemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Mohit Tyagi
- Technical
Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Narender Singh Rawat
- Radiological
Physics and Advisory Division, Bhabha Atomic
Research Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Pampa Modak
- Radiological
Safety Division, Atomic Energy Regulatory
Board, Anushaktinagar, Mumbai 400094, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kathi Sudarshan
- Radiochemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
5
|
Shelke AR, Wang HT, Chiou JW, Shown I, Sabbah A, Chen KH, Teng SA, Lin IA, Lee CC, Hsueh HC, Liang YH, Du CH, Yadav PL, Ray SC, Hsieh SH, Pao CW, Tsai HM, Chen CH, Chen KH, Chen LC, Pong WF. Bandgap Shrinkage and Charge Transfer in 2D Layered SnS 2 Doped with V for Photocatalytic Efficiency Improvement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105076. [PMID: 34799991 DOI: 10.1002/smll.202105076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Effects of electronic and atomic structures of V-doped 2D layered SnS2 are studied using X-ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X-ray absorption fine structure measurements at V K-edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X-ray absorption near-edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,β resonant inelastic X-ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo-excited electrons and effective carrier separation in layered SnS2 . Additionally, valence-band photoemission spectra and S K-edge XANES indicate that the density of states near/at valence-band maximum is shifted to lower binding energy in V-doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first-principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V-doped SnS2 .
Collapse
Affiliation(s)
- Abhijeet R Shelke
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Hsiao-Tsu Wang
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Jau-Wern Chiou
- Department of Applied Physics, National University of Kaohsiung, Kaohsiung, 811726, Taiwan
| | - Indrajit Shown
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Chemistry, Hindustan Institute of Technology and Science, Chennai, 603103, India
| | - Amr Sabbah
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuang-Hung Chen
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Shu-Ang Teng
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - I-An Lin
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Chi-Cheng Lee
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Hung-Chung Hsueh
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Yu-Hui Liang
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Chao-Hung Du
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Priyanka L Yadav
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
- Department of Physics, Shivaji University, Kolhapur, 416004, India
| | - Sekhar C Ray
- Department of Physics, CSET, University of South Africa, Johannesburg, 1710, South Africa
| | - Shang-Hsien Hsieh
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chih-Wen Pao
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Huang-Ming Tsai
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chia-Hao Chen
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Kuei-Hsien Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Way-Faung Pong
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| |
Collapse
|
6
|
Farahmand N, McGinn CK, Zhang Q, Gai Z, Kymissis I, O'Brien S. Magnetic and dielectric property control in the multivalent nanoscale perovskite Eu 0.5Ba 0.5TiO 3. NANOSCALE 2021; 13:10365-10384. [PMID: 33988208 DOI: 10.1039/d1nr00588j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report nanoscale Eu0.5Ba0.5TiO3, a multiferroic in the bulk and candidate in the search to quantify the electric dipole moment of the electron. Eu0.5Ba0.5TiO3, in the form of nanoparticles and other nanostructures is interesting for nanocomposite integration, biomedical imaging and fundamental research, based upon the prospect of polarizability, f-orbital magnetism and tunable optical/radio luminescence. We developed a [non-hydrolytic]sol-[H2O-activated]gel route, derived from in-house metallic Ba(s)/Eu(s) alkoxide precursors and Ti{(OCH(CH3)2}4. Two distinct nanoscale compounds of Ba:Ti:Eu with the parent perovskite crystal structure were produced, with variable dielectric, magnetic and optical properties, based on altering the oxidizing/reducing conditions. Eu0.5Ba0.5TiO3 prepared under air/O2 atmospheres produced a spherical core-shell nanostructure (30-35 nm), with perovskite Eu0.5Ba0.5TiO3 nanocrystal core-insulating oxide shell layer (∼3 nm), presumed a pre-pyrochlore layer abundant with Eu3+. Fluorescence spectroscopy shows a high intensity 5D0→7F2 transition at 622 nm and strong red fluorescence. The core/shell structure demonstrated excellent capacitive properties: assembly into dielectric thin films gave low conductivity (2133 GΩ mm-1) and an extremely stable, low loss permittivity of εeff∼25 over a wide frequency range (tan δ < 0.01, 100 kHz-2 MHz). Eu0.5Ba0.5TiO3 prepared under H2/argon produced more irregular shaped nanocrystals (20-25) nm, with a thin film permittivity around 4 times greater (εeff 101, tan δ < 0.05, 10 kHz-2 MHz, σ∼59.54 kΩ mm-1). Field-cooled magnetization values of 0.025 emu g-1 for EBTO-Air and 0.84 emu g-1 for EBTO-Argon were observed. X-ray photoelectron spectroscopy analysis reveals a complex interplay of EuII/III/TiIII/IV configurations which contribute to the observed ferroic and fluorescence behavior.
Collapse
Affiliation(s)
- Nasim Farahmand
- The CUNY Energy Institute, City University of New York, Steinman Hall, 160 Convent Avenue, The City College of New York, New York, NY 10031, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Xu Y, Zhang L, Dong L, Yin S, Wu X, You H. Novel SrGd 2Al 2O 7:Mn 4+, Nd 3+, and Yb 3+ phosphors for c-Si solar cells. Dalton Trans 2021; 50:7017-7025. [PMID: 33949505 DOI: 10.1039/d1dt00320h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel single-doped and codoped SrGd2Al2O7-based (SGA) phosphors with tunable emission were synthesized via the solid-state reaction approach. The optimal SGA:0.0008Mn4+ phosphor presents an emission band peaking at 709 nm and shows great red luminescence properties. With the incorporation of Nd3+/Yb3+ into SGA:0.0008Mn4+, an efficient energy transfer Mn4+→ Nd3+/Yb3+ was observed. When Nd3+ and Yb3+ were codoped into SGA:0.0008Mn4+, an energy transfer mechanism from Mn4+ to Nd3+ to Yb3+ was found on the basis of the energy transfer mediation of Nd3+ connecting the Mn4+ and Yb3+ luminescent centers. It results in a strong near-infrared emission in the spectral region of high response of c-Si solar cells, which suggests a potential approach to improve the energy conversion efficiency of c-Si solar cells. The findings offer a novel route to design new down-conversion luminescent materials for the c-Si solar cells.
Collapse
Affiliation(s)
- Yonghui Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | | | | | | | | | | |
Collapse
|