1
|
Shah HA, Yasmin S, Ansari MY. Application of Machine Learning (ML) approach in discovery of novel drug targets against Leishmania: A computational based approach. Comput Biol Chem 2025; 117:108423. [PMID: 40086345 DOI: 10.1016/j.compbiolchem.2025.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/06/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Molecules with potent anti-leishmanial activity play a crucial role in identifying treatments for leishmaniasis and aiding in the design of novel drugs to combat the disease, ultimately protecting individuals and populations. Various methods have been employed to represent molecular structures and predict effective anti-leishmanial molecules. However, each method faces challenges and limitations that must be addressed to optimize the drug discovery and design process. Recently, machine learning approaches have gained significant importance in overcoming the limitations of traditional methods across various fields. Therefore, there is an urgent need to build a computational pipeline using advanced machine learning and deep learning methods that help to predict anti-leishmanial activity of drug candidates. The proposed pipeline in this paper involves data collection, feature extraction, feature selection and prediction techniques. This review presents a comprehensive computational pipeline for anti-leishmanial drug discovery, highlighting its strengths, limitations, challenges, and future directions to improve treatment for this neglected tropical disease.
Collapse
Affiliation(s)
- Hayat Ali Shah
- Wuhan University School of Computer Science Institute of Artificial Intelligence, China; National University of Science and Technology, School of Natural Science, Department of Mathematics, Islamabad-44230 Pakistan
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Yousuf Ansari
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India; Ibne Seena College of Pharmacy, Azmi Vidya Nagri, Anjhi Shahabad, Hardoi - Uttar Pradesh (U.P.) 241124 India.
| |
Collapse
|
2
|
Sasidharan S, Saudagar P. 4',7-dihydroxyflavone conjugated carbon nanotube formulation demonstrates improved efficacy against Leishmania parasite. Biochim Biophys Acta Gen Subj 2023; 1867:130416. [PMID: 37463617 DOI: 10.1016/j.bbagen.2023.130416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023]
Abstract
One of the global problems of rising concern is the spread of the neglected tropical disease, leishmaniasis. There are several drugs used for the treatment of the disease but the repertoire of drugs has drawbacks like toxicity and low therapeutic value. Considering the need for new drugs, we studied the synthesis of 4',7-dihydroxyflavone conjugated multi-walled carbon nanotubes (47DHF-MWCNTs) and evaluated their anti-leishmanial activity against Leishmania donovani. The compound 47DHF was conjugated to the acid oxidized MWCTNs by Steglich esterification. The synthesized 47DHF-MWCNTs were characterized by UV spectroscopy, and, from the zeta value of 35 mV, they were found to be stable. 47DHF-MWCNTs possessed 84% drug loading efficiency and 63% cumulative drug release at intra-macrophage pH of 5.8. Moreover, the evaluation of 47DHF-MWCNTs for activity showed an IC50 value of 0.051 ± 0.01 μg/ml and 0.072 ± 0.01 μg/ml against the promastigote and amastigote form, respectively. 47DHF-MWCNTs exhibited an infectivity index of 42 and selectivity index of 95, suggesting the activity of 47DHF-MWCNTs against intracellular amastigotes in the study. The 47DHF-MWCNTs also had low cytotoxicity towards macrophage cells. Fascinatingly, the 47DHF-MWCNTs treatment causes a high accumulation of ROS in the promastigotes suggesting the mechanism of anti-leishmanial activity to be ROS mediated. Summarizing from our results, we propose for the first time a novel 47DHF conjugated MWCNTs capable of anti-leishmanial activity with lower cytotoxicity that has a huge potential to be a formulation against leishmaniasis.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India.
| |
Collapse
|
3
|
Sasidharan S, Saudagar P. An anti-leishmanial compound 4',7-dihydroxyflavone elicits ROS-mediated apoptosis-like death in Leishmania parasite. FEBS J 2023. [PMID: 36871140 DOI: 10.1111/febs.16770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The treatment for leishmaniasis is currently plagued by side effects such as toxicity and the emergence of drug resistance to the available repertoire of drugs, as well as the expense of these drugs. Considering such rising concerns, we report the anti-leishmanial activity and mechanism of a flavone compound 4',7-dihydroxyflavone (TI 4). Four flavanoids were initially screened for anti-leishmanial activity and cytotoxicity. The results showed that the compound TI 4 exhibited higher activity and selectivity index at the same time as maintaining low cytotoxicity. Preliminary microscopic studies and fluorescence-activated cell sorting analysis reported that the parasite underwent apoptosis on TI 4 treatment. Further in-depth studies revealed high reactive oxygen species (ROS) production and thiol levels in the parasites, suggesting ROS-mediated apoptosis in the parasites upon TI 4 treatment. Other apoptotic indicators such as intracellular Ca2+ and mitochondrial membrane potential also indicated the onset of apoptosis in the treated parasites. The mRNA expression levels signified that the redox metabolism genes were upregulated by two-fold along with the apoptotic genes. In summary, the use of TI 4 on Leishmania parasites induces ROS-mediated apoptosis; therefore, the compound has immense potential to be an anti-leishmanial drug. However, in vivo studies would be required to ascertain its safety and efficacy before we can exploit the compound against the growing leishmaniasis crisis.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
4
|
Sasidharan S, Saudagar P. Knockout of Tyrosine Aminotransferase Gene by Homologous Recombination Arrests Growth and Disrupts Redox Homeostasis in Leishmania Parasite. Parasitol Res 2022; 121:3229-3241. [PMID: 36056961 DOI: 10.1007/s00436-022-07642-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
Tyrosine aminotransferase is a well-characterized enzyme in the Leishmania parasite, but the role of TAT in the parasite functioning remains largely unknown. In this study, we attempt to gain a better understanding of the enzyme's role in the parasite by gene knockout and overexpression of the TAT gene. The overexpression of TAT protein was well tolerated by the parasites in two independent repeats. Single knockout of TAT gene by homologous recombination, LdTAT+/- displayed distinct retardation in the proliferation rates and entered the death phase immediately. Morphology of LdTAT+/- parasites had important structural defects as they rounded up with elongated flagella. Gene regulation studies suggested the upregulation of key apoptotic and redox metabolism genes in LdTAT+/-. Moreover, LdTAT+/- cells accumulated higher ROS, thiols, intracellular Ca2+ concentrations, and mitochondrial membrane depolarization signifying the onset of apoptosis. Tocopherol levels were reduced by 50% in LdTAT+/- suggesting the involvement of TAT in tocopherol biosynthesis in the parasite. Overall, our results provide the first evidence that gene knockout of TAT results in apoptosis and that TAT is required for the survival and viability of Leishmania donovani.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
5
|
Sasidharan S, Saudagar P. Gold and silver nanoparticles functionalized with 4',7-dihydroxyflavone exhibit activity against Leishmania donovani. Acta Trop 2022; 231:106448. [PMID: 35395228 DOI: 10.1016/j.actatropica.2022.106448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022]
Abstract
Leishmaniasis is a neglected tropical disease that has been burdening the world for over a century. Though there are drugs to treat leishmaniasis, the repertoire suffers several drawbacks like toxicity and low therapeutic value. Therefore, there is a rising concern to develop new anti-leishmanial strategies. In this study, we report, for the first time, the one-pot synthesis method and functionalization of gold and silver nanoparticles with 4',7-dihydroxyflavone (Au-47DHF and Ag-47DHF)) and their anti-leishmanial activity. Oval and spherical-shaped Au-47DHF nanoparticles were obtained with an average size of 5.8 ± 0.1 nm and while synthesized dodecahedron-shaped Ag-47DHF had an average size of 25.1 ± 1 nm. The zeta potential of Au-47DHF and Ag-47DHF were measured to be stable with values of 40 mV and 60 mV, respectively. The functionalization of nanoparticles with 4',7-dihydroxyflavone was confirmed by FTIR spectra. Both Au-47DHF and Ag-47DHF exhibited promising anti-leishmanial activity against the promastigote forms with IC50 values of 0.1226 ± 0.02 µg/ml and 0.8483 ± 0.14 µg/ml, respectively. The nanoparticles were also capable of anti-intracellular amastigote activity with 0.121 ± 0.36 µg/ml and 0.215 ± 0.85 µg/ml for Au-47DHF and Ag-47DHF, respectively. Interestingly, the treatment with Au-47DHF and Ag-47DHF nanoparticles generated high ROS concentrations in the parasites suggesting a ROS-mediated anti-leishmanial activity of Au-47DHF and Ag-47DHF. Concluding from the results, we present here a novel synthesis method of Au-47DHF and Ag-47DHF nanoparticles that have immense potential to be anti-leishmanial agents.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal,506004, Telangana, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal,506004, Telangana, India.
| |
Collapse
|
6
|
Liang Y, Zhang T, Zhao J, Li C, Zou H, Li F, Zhang J, Ren L. Glucocorticoid receptor-mediated alleviation of inflammation by berberine: in vitro, in silico and in vivo investigations. Food Funct 2021; 12:11974-11986. [PMID: 34747965 DOI: 10.1039/d1fo01612a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a natural dietary ingredient, berberine possesses multiple biological activities including anti-inflammatory effects. In this work, glucocorticoid receptor (GR)-mediated alleviation of inflammation by berberine was investigated by a combination of in vitro, in silico, and in vivo approaches. The fluorescence polarization assay showed that berberine bound to GR with an IC50 value of 9.14 ± 0.16 pM. Molecular docking and molecular dynamics simulation suggested that berberine bound stably to the active site of GR via hydrogen bonding and hydrophobic interactions. Berberine induced GR nuclear translocation but did not activate the glucocorticoid response element in HeLa cells. Furthermore, both gene and protein expressions of PEPCK were significantly attenuated by berberine in HepG2 cells. Interestingly, berberine downregulated CBG mRNA and protein levels without up-regulating TAT mRNA and protein levels in HepG2 cells, demonstrating its dissociated characteristics that could separate transrepression from transactivation. In addition, the in vitro and in vivo anti-inflammatory effects of berberine were confirmed in lipopolysaccharide-induced RAW 264.7 cells and in a mouse model of allergic contact dermatitis, respectively. In conclusion, berberine might serve as a potential selective GR modulator.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chenfei Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Fangyu Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
7
|
Škodová-Sveráková I, Záhonová K, Juricová V, Danchenko M, Moos M, Baráth P, Prokopchuk G, Butenko A, Lukáčová V, Kohútová L, Bučková B, Horák A, Faktorová D, Horváth A, Šimek P, Lukeš J. Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum. BMC Biol 2021; 19:251. [PMID: 34819072 PMCID: PMC8611851 DOI: 10.1186/s12915-021-01186-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The phylum Euglenozoa is a group of flagellated protists comprising the diplonemids, euglenids, symbiontids, and kinetoplastids. The diplonemids are highly abundant and speciose, and recent tools have rendered the best studied representative, Diplonema papillatum, genetically tractable. However, despite the high diversity of diplonemids, their lifestyles, ecological functions, and even primary energy source are mostly unknown. RESULTS We designed a metabolic map of D. papillatum cellular bioenergetic pathways based on the alterations of transcriptomic, proteomic, and metabolomic profiles obtained from cells grown under different conditions. Comparative analysis in the nutrient-rich and nutrient-poor media, as well as the absence and presence of oxygen, revealed its capacity for extensive metabolic reprogramming that occurs predominantly on the proteomic rather than the transcriptomic level. D. papillatum is equipped with fundamental metabolic routes such as glycolysis, gluconeogenesis, TCA cycle, pentose phosphate pathway, respiratory complexes, β-oxidation, and synthesis of fatty acids. Gluconeogenesis is uniquely dominant over glycolysis under all surveyed conditions, while the TCA cycle represents an eclectic combination of standard and unusual enzymes. CONCLUSIONS The identification of conventional anaerobic enzymes reflects the ability of this protist to survive in low-oxygen environments. Furthermore, its metabolism quickly reacts to restricted carbon availability, suggesting a high metabolic flexibility of diplonemids, which is further reflected in cell morphology and motility, correlating well with their extreme ecological valence.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Valéria Juricová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
- Medirex Group Academy n.o., Trnava, Slovakia
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Lenka Kohútová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Bučková
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Petr Šimek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
8
|
Gontijo VS, Colombo FA, Ferreira Espuri P, Freitas PGD, Nunes JB, Alves LB, Veloso MP, Alves RB, Freitas RP, Marques MJ. In vivo evaluation of anti-Leishmania activity of alkyltriazoles and alkylphosphocholines by oral route. Exp Parasitol 2021; 226-227:108123. [PMID: 34144040 DOI: 10.1016/j.exppara.2021.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
The failures in the treatment of leishmaniasis is an increasing problem around the world, especially related to resistance. Thus, we describe the synthesis and in vivo anti-Leishmania activity of alkylphosphocholine and alkyltriazoles; besides, their likely action mechanisms stem from some eventual inhibition of parasite enzymes using computational tools. These compounds were tested in an in vivo hamster model infected with Leishmania Leishmania infantum chagasi. Fifty days after parasite inoculation, the two compounds 12-azidedodecylphosphocholine (3) and 3-(1-(12-fluorododecyl)-1H-1,2,3-triazol-1-yl)propano-1-ol (9), were separately administered once a day as oral suspensions (25 and 12.5 mg/kg/day, respectively) during ten days, and their efficacy was compared to the reference compound pentavalent antimonial Glucantime (GLU). Compound 3 significantly reduced the number of parasites in the spleen (4.93 × 102 amastigotes/g) and liver (4.52 × 103 amastigotes/g). Compound 9 reduced the number of amastigotes in the spleen to 1.30 × 104 and 1.36 × 103 amastigotes/g in the liver. GLU was the most effective overall treatment (7.50 × 101 and 2.28 × 102 amastigotes/g in the spleen and liver, respectively). The high activity levels of these compounds in vivo may stem from their high in vitro leishmanicidal activity and lipophilicity. The in silico absorption, distribution, metabolism, and excretion studies also showed some anti-Leishmania potential. Compound 9 had more lipophilic characteristics than those of compound 3. In silico studies of the nine enzymes of compounds 3 and 9 showed significant evidence of interactions with nicotimidase and tyrosine aminotransferase, demonstrating possible inhibition enzymes present in L. (L.) infantum chagasi. These compounds could be a promising template for developing a new class of leishmanicidal agents, by oral route, and deserve further investigation to explore different therapeutic regimens.
Collapse
Affiliation(s)
- Vanessa Silva Gontijo
- Departamento de Química, ICEx, UFMG, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Fabio Antônio Colombo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Patrícia Ferreira Espuri
- Departamento de Patologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Poliany Graziella de Freitas
- Laboratório de Modelagem Molecular e Simulação Computacional, MolMod-CS, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Juliana Barbosa Nunes
- Laboratório de Patologia de Moléstias Infecciosas, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, São Paulo, SP, Brazil
| | - Levy Bueno Alves
- Laboratório de Modelagem Molecular e Simulação Computacional, MolMod-CS, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Márcia Paranho Veloso
- Laboratório de Modelagem Molecular e Simulação Computacional, MolMod-CS, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil
| | - Rosemeire Brondi Alves
- Departamento de Química, ICEx, UFMG, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Rossimiriam Pereira Freitas
- Departamento de Química, ICEx, UFMG, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcos José Marques
- Departamento de Patologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700- Centro, 37130-001, Alfenas, MG, Brazil.
| |
Collapse
|