1
|
Huang M, Zhang Y, Chen Z, Liu C, Wang J, Feng X, Cheng W, Wu Q, Wang Y, Liu Q. Effectiveness and biocompatibility of a novel Schlemm's canal microstent for glaucoma management. Sci Rep 2024; 14:24919. [PMID: 39438649 PMCID: PMC11496681 DOI: 10.1038/s41598-024-76789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
To evaluate the effectiveness and biocompatibility of Wistend, a novel Schlemm's canal (SC) microstent made of Nitinol designed to improve aqueous humor outflow. New Zealand white (NZW) rabbits were divided into blank, sham-operated and Wistend groups. ICare® Tonovet Plus®, swept-source optical coherence tomography (SS-OCT), slit lamp biomicroscopy, retinal camera and scanning electron microscopy (SEM) were used for preoperative and postoperative observations. Hematoxylin and Eosin (H&E) tissue staining was adopted for biocompatibility. A significant difference in intraocular pressure (IOP) between the Wistend group and the control groups was observed during the six-month follow-up. SS-OCT identified arc line internal reflections within the SC in the anterior chamber angle. Conjunctival congestion and edema gradually diminished in the early stages. No corneal vascularization, no anterior chamber inflammatory response and no significant tissue reactions were noted in any groups. SEM showed the Wistend's windows and orifices remained clear, encircled by minimal incidental ocular tissue and free from blockage. Histopathological examination revealed no discernible differences between the Wistend-implanted and sham-operated eyes. These in vivo studies demonstrate the effectiveness and biocompatibility of the microstent. Our findings suggest a promising potential for Wistend in significantly reducing IOP and effectively facilitating the outflow of aqueous humor.
Collapse
Affiliation(s)
- Manman Huang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Yu Zhang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Zhao Chen
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Changgeng Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Jiaojiao Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Xiaomei Feng
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Wenjun Cheng
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Qianyu Wu
- Xinzheng Branch Zhengzhou Central Hospital, Public People's Hospital of Xinzheng, Xinzheng, China
| | - Yingfan Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Qian Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
2
|
Fang Z, Bi S, Brown JD, Chen J, Pan T. Microfluidics in the eye: a review of glaucoma implants from an engineering perspective. LAB ON A CHIP 2023; 23:4736-4772. [PMID: 37847237 DOI: 10.1039/d3lc00407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Glaucoma is a progressive optic neuropathy in the eye, which is a leading cause of irreversible blindness worldwide and currently affects over 70 million individuals. Clinically, intraocular pressure (IOP) reduction is the only proven treatment to halt the progression of glaucoma. Microfluidic devices such as glaucoma drainage devices (GDDs) and minimally invasive glaucoma surgery (MIGS) devices are routinely used by ophthalmologists to manage elevated IOP, by creating an artificial pathway for the over-accumulated aqueous humor (AH) in a glaucomatous eye, when the natural pathways are severely blocked. Herein, a detailed modelling and analysis of both the natural microfluidic pathways of the AH in the eye and artificial microfluidic pathways formed additionally by the various glaucoma implants are conducted to provide an insight into the causes of the IOP abnormality and the improvement schemes of current implant designs. The mechanisms of representative glaucoma implants have been critically reviewed from the perspective of microfluidics, and we have categorized the current implants into four groups according to the targeted drainage sites of the AH, namely Schlemm's canal, suprachoroidal space, subconjunctival space, and ocular surface. In addition, we propose to divide the development and evolution of glaucoma implant designs into three technological waves, which include microtube (1st), microvalve (2nd) and microsystem (3rd). With the emerging trends of minimal invasiveness and artificial intelligence in the development of medical implants, we envision that a comprehensive glaucoma treatment microsystem is on the horizon, which is featured with active and wireless control of IOP, real-time continuous monitoring of IOP and aqueous rate, etc. The current review could potentially cast light on the unmatched needs, challenges, and future directions of the microfluidic structural and functional designs of glaucoma implants, which would enable an enhanced safety profile, reduced complications, increased efficacy of lowering IOP and reduced IOP fluctuations, closed-loop and on-demand control of IOP, etc.
Collapse
Affiliation(s)
- Zecong Fang
- Bionic Sensing and Intelligence Center (BSIC), Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Shuzhen Bi
- Center for Intelligent Medical Equipment and Devices (iMED), University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | | | - Junyi Chen
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Tingrui Pan
- Bionic Sensing and Intelligence Center (BSIC), Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
- Center for Intelligent Medical Equipment and Devices (iMED), University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
3
|
Josyula A, Mozzer A, Szeto J, Ha Y, Richmond N, Chung SW, Rompicharla SVK, Narayan J, Ramesh S, Hanes J, Ensign L, Parikh K, Pitha I. Nanofiber-based glaucoma drainage implant improves surgical outcomes by modulating fibroblast behavior. Bioeng Transl Med 2023; 8:e10487. [PMID: 37206200 PMCID: PMC10189467 DOI: 10.1002/btm2.10487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 11/02/2023] Open
Abstract
Biomaterials are implanted in millions of individuals worldwide each year. Both naturally derived and synthetic biomaterials induce a foreign body reaction that often culminates in fibrotic encapsulation and reduced functional lifespan. In ophthalmology, glaucoma drainage implants (GDIs) are implanted in the eye to reduce intraocular pressure (IOP) in order to prevent glaucoma progression and vision loss. Despite recent efforts towards miniaturization and surface chemistry modification, clinically available GDIs are susceptible to high rates of fibrosis and surgical failure. Here, we describe the development of synthetic, nanofiber-based GDIs with partially degradable inner cores. We evaluated GDIs with nanofiber or smooth surfaces to investigate the effect of surface topography on implant performance. We observed in vitro that nanofiber surfaces supported fibroblast integration and quiescence, even in the presence of pro-fibrotic signals, compared to smooth surfaces. In rabbit eyes, GDIs with a nanofiber architecture were biocompatible, prevented hypotony, and provided a volumetric aqueous outflow comparable to commercially available GDIs, though with significantly reduced fibrotic encapsulation and expression of key fibrotic markers in the surrounding tissue. We propose that the physical cues provided by the surface of the nanofiber-based GDIs mimic healthy extracellular matrix structure, mitigating fibroblast activation and potentially extending functional GDI lifespan.
Collapse
Affiliation(s)
- Aditya Josyula
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ann Mozzer
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Julia Szeto
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Youlim Ha
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Nicole Richmond
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Seung Woo Chung
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sri Vishnu Kiran Rompicharla
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Janani Narayan
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Samiksha Ramesh
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Justin Hanes
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of Pharmacology and Molecular Sciences, Environmental Health Sciences, Oncology, and NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Laura Ensign
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of Pharmacology and Molecular Sciences, Infectious Diseases, Oncology, and Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kunal Parikh
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Center for Bioengineering Innovation & DesignJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ian Pitha
- Center for NanomedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Ophthalmology, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Glaucoma Center of Excellence, Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
4
|
Animal Model Contributions to Primary Congenital Glaucoma. J Ophthalmol 2022; 2022:6955461. [PMID: 35663518 PMCID: PMC9162845 DOI: 10.1155/2022/6955461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Primary congenital glaucoma (PCG) is an ocular disease characterized by congenital anterior segmental maldevelopment with progressive optic nerve degeneration. Certain genes, such as cytochrome P450 family 1 subfamily B member 1 and latent TGF-β-binding protein 2, are involved in the pathogenesis of PCG, but the exact pathogenic mechanism has not yet been fully elucidated. There is an urgent need to determine the etiology and pathophysiology of PCG and develop new therapeutic methods to stop disease progression. Animal models can simulate PCG and are essential to study the pathogenesis and treatment of PCG. Various animal species have been used in the study of PCG, including rabbits, rats, mice, cats, zebrafish, and quails. These models are formed spontaneously or by combining with genetic engineering technology. The focus of the present study is to review the characteristics and potential applications of animal models in PCG and provide new approaches to understand the mechanism and develop new treatment strategies for patients with PCG.
Collapse
|
5
|
Andreadis II, Karavasili C, Thomas A, Komnenou A, Tzimtzimis M, Tzetzis D, Andreadis D, Bouropoulos N, Fatouros DG. In Situ Gelling Electrospun Ocular Films Sustain the Intraocular Pressure-Lowering Effect of Timolol Maleate: In Vitro, Ex Vivo, and Pharmacodynamic Assessment. Mol Pharm 2022; 19:274-286. [PMID: 34877863 DOI: 10.1021/acs.molpharmaceut.1c00766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most common intraocular pressure (IOP) reduction regimens for the management of glaucoma include the topical use of eye drops, a dosage form that is associated with short residence time at the site of action, increased dosing frequency, and reduced patient compliance. In situ gelling nanofiber films comprising poly(vinyl alcohol) and Poloxamer 407 were fabricated via electrospinning for the ocular delivery of timolol maleate (TM), aiming to sustain the IOP-lowering effect of the β-blocker, compared to conventional eye drops. The electrospinning process was optimized, and the physicochemical properties of the developed formulations were thoroughly investigated. The fiber diameters of the drug-loaded films ranged between 123 and 145 nm and the drug content between 5.85 and 7.83% w/w. Total in vitro drug release from the ocular films was attained within 15 min following first-order kinetics, showing higher apparent permeability (Papp) values across porcine corneas compared to the drug's solution. The fabricated films did not induce any ocular irritation as evidenced by both the hen's egg test on chorioallantoic membrane and the in vivo Draize test. In vivo administration of the ocular films in rabbits induced a faster onset of action and a sustained IOP-lowering effect up to 24 h compared to TM solution, suggesting that the proposed ocular films are promising systems for the sustained topical delivery of TM.
Collapse
Affiliation(s)
- Ioannis I Andreadis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
| | - Christina Karavasili
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
| | - Angelos Thomas
- Comparative Ophthalmology Unit, Department of Clinical Studies, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54627, Greece
| | - Anastasia Komnenou
- Comparative Ophthalmology Unit, Department of Clinical Studies, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54627, Greece
| | - Manolis Tzimtzimis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, Thermi 57001, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, Thermi 57001, Greece
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Patras GR-26504, Greece.,Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras GR-26504, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
| |
Collapse
|