Zhou X, Jomaa S, Yang X, Merz R, Wang Y, Rode M. Stream restoration can reduce nitrate levels in agricultural landscapes.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;
896:164911. [PMID:
37355120 DOI:
10.1016/j.scitotenv.2023.164911]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
The EU Water Framework Directive (WFD) has emphasized that altered stream/river morphology and diffuse pollution are the two major pressures faced by European water bodies at catchment scales. Increasing efforts have been directed toward restoration to meet WFD standards for ecological health, but this work has achieved limited success. One challenge is that little is known about how morphological changes (i.e., re-meandering) may affect nitrate retention within whole stream networks. We investigated this issue in the well-monitored Bode catchment (3200 km2) in central Germany. First, we implemented a fully distributed process-based mHM-Nitrate model, exploring its performance over the period from 2015 to 2018. Second, we simulated the effects of restoring more natural stream morphology (i.e., increasing sinuosity) on nitrate retention. The mHM-Nitrate model performed well in replicating daily discharge and nitrate concentrations (median Kling-Gupta values of 0.78 and 0.74, respectively). Within the stream network, mean and standard deviation (SD) of gross nitrate retention efficiency was 5.1 ± 0.61 % and 74.7 ± 23.2 % in the winter and summer, respectively; this measure took into account both denitrification and assimilatory uptake. In the summer, the denitrification rate was about twice as high in a lowland sub-catchment dominated by agricultural lands as in a mountainous sub-catchment dominated by forested areas (median ± SD of 204 ± 22.6 and 102 ± 22.1 mg N m-2 d-1, respectively). Similarly, in the same season, the assimilatory uptake rate was approximately five times higher in streams surrounded by lowland agricultural areas than in streams in higher-elevation, forested areas (median ± SD of 200 ± 27.1 and 39.1 ± 8.7 mg N m-2 d-1, respectively). This suggests that restoration strategies targeted at lowland agricultural areas may have a greater potential for increasing nitrate retention. In our simulation, restoring stream sinuosity was found to increase net nitrate retention efficiency by up to 25.4 ± 5.3 %; greater effects were seen in small streams. Taken together, our results indicate that restoration efforts should consider augmenting stream sinuosity to increase nitrate retention and decrease nitrate concentrations at the catchment scale.
Collapse