1
|
Higgins OA, Modi A, Cannariato C, Diroma MA, Lugli F, Ricci S, Zaro V, Vai S, Vazzana A, Romandini M, Yu H, Boschin F, Magnone L, Rossini M, Di Domenico G, Baruffaldi F, Oxilia G, Bortolini E, Dellù E, Moroni A, Ronchitelli A, Talamo S, Müller W, Calattini M, Nava A, Posth C, Lari M, Bondioli L, Benazzi S, Caramelli D. Life history and ancestry of the late Upper Palaeolithic infant from Grotta delle Mura, Italy. Nat Commun 2024; 15:8248. [PMID: 39304646 PMCID: PMC11415373 DOI: 10.1038/s41467-024-51150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/30/2024] [Indexed: 09/22/2024] Open
Abstract
The biological aspects of infancy within late Upper Palaeolithic populations and the role of southern refugia at the end of the Last Glacial Maximum are not yet fully understood. This study presents a multidisciplinary, high temporal resolution investigation of an Upper Palaeolithic infant from Grotta delle Mura (Apulia, southern Italy) combining palaeogenomics, dental palaeohistology, spatially-resolved geochemical analyses, direct radiocarbon dating, and traditional anthropological studies. The skeletal remains of the infant - Le Mura 1 - were directly dated to 17,320-16,910 cal BP. The results portray a biological history of the infant's development, early life, health and death (estimated at ~72 weeks). They identify, several phenotypic traits and a potential congenital disease in the infant, the mother's low mobility during gestation, and a high level of endogamy. Furthermore, the genomic data indicates an early spread of the Villabruna-like components along the Italian peninsula, confirming a population turnover around the time of the Last Glacial Maximum, and highlighting a general reduction in genetic variability from northern to southern Italy. Overall, Le Mura 1 contributes to our better understanding of the early stages of life and the genetic puzzle in the Italian peninsula at the end of the Last Glacial Maximum.
Collapse
Affiliation(s)
- Owen Alexander Higgins
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy.
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy.
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence, Italy.
| | | | | | - Federico Lugli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Stefano Ricci
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Valentina Zaro
- Department of Biology, University of Florence, Florence, Italy
| | - Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | - Antonino Vazzana
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Matteo Romandini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - He Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Francesco Boschin
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Luigi Magnone
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Matteo Rossini
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | | | - Fabio Baruffaldi
- Laboratory of Medical Technology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gregorio Oxilia
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Elena Dellù
- Institute Villa Adriana e Villa d'Este, Superintendence of Archeology, Fine Arts and Landscape for the metropolitan city of Bari - Ministry of Culture, Bari, Italy
| | - Adriana Moroni
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Annamaria Ronchitelli
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, Italy
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wolfgang Müller
- Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
- Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt, Frankfurt am Main, Germany
| | - Mauro Calattini
- Department of History and Cultural Heritage, University of Siena, Siena, Italy
| | - Alessia Nava
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Cosimo Posth
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
| | - Martina Lari
- Department of Biology, University of Florence, Florence, Italy
| | - Luca Bondioli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Department of Cultural Heritage, University of Padua, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Tancredi D, Cardinali I. Being a Dog: A Review of the Domestication Process. Genes (Basel) 2023; 14:genes14050992. [PMID: 37239352 DOI: 10.3390/genes14050992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The process of canine domestication represents certainly one of the most interesting questions that evolutionary biology aims to address. A "multiphase" view of this process is now accepted, with a first phase during which different groups of wolves were attracted by the anthropogenic niche and a second phase characterized by the gradual establishment of mutual relationships between wolves and humans. Here, we provide a review of dog (Canis familiaris) domestication, highlighting the ecological differences between dogs and wolves, analyzing the molecular mechanisms which seem to have influenced the affiliative behaviors first observed in Belyaev's foxes, and describing the genetics of ancient European dogs. Then, we focus on three Mediterranean peninsulas (Balkan, Iberian and Italian), which together represent the main geographic area for studying canine domestication dynamics, as it has shaped the current genetic variability of dog populations, and where a well-defined European genetic structure was pinpointed through the analysis of uniparental genetic markers and their phylogeny.
Collapse
Affiliation(s)
- Domenico Tancredi
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|
3
|
Perini F, Cardinali I, Ceccobelli S, Gruppetta A, José CS, Cosenza M, Musso N, Martìnez A, Abushady AM, Monteagudo LV, Liotta L, Lancioni H, Attard G, Lasagna E. Phylogeographic and population genetic structure of hound-like native dogs of the Mediterranean Basin. Res Vet Sci 2023; 155:103-114. [PMID: 36669378 DOI: 10.1016/j.rvsc.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The dog was probably the first domesticated animal. Despite extensive archaeological and genetic investigations, the origin and the evolution of the extant dogs are still being debated. Dog breeds that have over time been selected for hunting share common ancestral traits. This study represents the first comprehensive attempt to survey at the genomic and mitochondrial level eight hound-like dogs breeds indigenous to the Mediterranean Basin to determine if they share common ancient origins. Results from the microsatellite analysis indicate that all the dog populations have a low inbreeding value.The Kelb tal-Fenek has a high divergence from the current Egyptian street population, however there is not enough evidence from this study to exclude completely the potential of an ancient common relationship. Overall, the mitochondrial results indicate high frequencies of haplogroups A and B and a low representation of haplogroup C, while only one Egyptian dog could be assigned to haplogroup D. Results reveal identities and shared clades, suggesting the conservation of ancient European mitotypes in the Mediterranean hound-like breeds, especially in the Egyptian population. Although none of the dog populations/breeds participating in this study indicate to be direct descendants of the Egyptian dogs, they still have a very close morphologically resemblance to those iconic Egyptian dogs often depicted in ancient art forms and share some genetic links with the current Egyptian population. Further research is required with other markers such us complete mitogenomes and SNP panels to confirm the complex history of the Mediterranean dogs involved in this study.
Collapse
Affiliation(s)
- Francesco Perini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto, 06123 Perugia, Italy
| | - Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy.
| | - Anthony Gruppetta
- St. Simon Veterinary Practice, 53, Grognet Street MST 3611, Mosta, Northern Region, Malta
| | - Carlos San José
- Biodonostia Health Research Institute, Paseo Dr. Begiristain, s/n, 20014 San Sebastián, Gipuzkoa, Spain
| | - Mario Cosenza
- Laboratorio di Genetica Forense Veterinaria, Unirelab srl, Milan, Settimo Milanese, Italy
| | - Nicolò Musso
- Molecular Analysis and Biology Laboratory Biogene, Via Giacomo Leopardi 50, 95127 Catania, Italy
| | - Amparo Martìnez
- Department of Genetics, University of Córdoba, Ctra. Madrid-Córdoba km 396, 14071 Córdoba, Spain
| | - Asmaa M Abushady
- Biotechnology School, Nile University, first 6th of October, Giza Governorate, Egypt; Department of Genetics, Faculty of Agriculture, Ain Shams University, Shubra Al Kheimah, Awal Shubra Al Kheimah, Cairo, Egypt
| | - Luis V Monteagudo
- Department of Anatomy, Embryology and Animal Genetics, Faculty of Veterinary Sciences, University of Zaragoza, Calle de Pedro Cerbuna, 12, 50009 Zaragoza, Spain; Agrifood Institute of Aragon (IA2), University of Zaragoza-CITA, Calle de Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto, 06123 Perugia, Italy
| | - George Attard
- Department of Rural Sciences and Food Systems, University of Malta, 2080 Msida, Malta
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| |
Collapse
|
4
|
The Role of Socialisation in the Taming and Management of Wild Dingoes by Australian Aboriginal People. Animals (Basel) 2022; 12:ani12172285. [PMID: 36078005 PMCID: PMC9454437 DOI: 10.3390/ani12172285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The dingo (Canis dingo) is a wild-living canid endemic to mainland Australia; the descendent of an early lineage of dog introduced thousands of years ago to the continent, where it was isolated from further introductions of domestic canines until European colonisation began in 1788. Dingoes are notoriously difficult to maintain in captivity and owing to their predatory nature it is also known that they can pose a serious risk to children. Yet, written records and oral histories indicate that Aboriginal people in mainland Australia routinely practiced the rearing and keeping of dingoes in a tame state within their home communities and domestic spaces. This paper reviews historical and archaeological evidence for the management of wild and captive dingoes by Indigenous communities, revealing a substantial divide between the nature and outcomes of these interactions between historical/pre-contact Aboriginal societies and those in contemporary Australia. It is concluded that this special human-wild canid relationship has implications for the understanding of the domestication of dogs from wolves during the Late Pleistocene. Abstract Historical sources and Indigenous oral traditions indicate that Australian Aboriginal people commonly reared and kept the wild-caught pups of dingoes (C. dingo) as tamed companion animals. A review of the available evidence suggests Indigenous communities employed an intense socialisation process that forged close personal bonds between humans and their tame dingoes from an early age. This was complemented by oral traditions which passed down awareness of the dangers to children posed by wild or unfamiliar dingoes, and which communicated the importance of treating dingoes with respect. Together, these practices resulted in what can be interpreted as substantially altered behaviours in tamed dingoes, which, despite their naturally high prey drive, were not considered a serious threat to children and were thus able to be maintained as companion animals in the long term. This relationship is of importance for understanding the original domestication of the dog, as it demonstrates a means by which careful and deliberate socialisation by foragers could both manage risks to children’s safety posed by keeping wild canids in the domestic realm and retain them well into reproductive maturity—both issues which have been highlighted as obstacles to the domestication of dogs from wolves.
Collapse
|
5
|
Orozco L, López-Pérez AM, Zarza H, Suzán G, List R. Dog demography and husbandry practices facilitate dog-wildlife conflict in a suburban-forest interface. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Performance of innovative nanomaterials for bone remains consolidation and effect on 14C dating and on palaeogenetic analysis. Sci Rep 2022; 12:6975. [PMID: 35484192 PMCID: PMC9050738 DOI: 10.1038/s41598-022-10798-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
An innovative protocol for the consolidation of ancient bone remains based on the use of nanometric HydroxyAPatite (HAP) was set up and tested through a multidisciplinary approach. A new protocol for the synthesis of HAP nanoparticles was developed, and the composition of the obtained nanomaterial was investigated through Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD); sizes, shape and morphology of the synthesized particles were studied by Scanning Electron Microscopy (SEM). The consolidation performance was evaluated by testing the new nanomaterial on degraded ancient bone findings. An increase of the mineral density and of the micro-hardness of the bone were observed. The new consolidation method was also tested to assess possible effects on the palaeogenetic analysis and radiocarbon dating on the treated bones. The consolidation treatment does not introduce any contaminations that could affect radiocarbon dating and has no general detrimental impact on the genetic characterization of the skeletal remains. This consolidation procedure represents a more compatible conservation tool with respect to traditional procedures: it has been shown that the treatment is effective, easily-applicable and compatible with post-consolidation analysis.
Collapse
|
7
|
A Middle Pleistocene wolf from central Italy provides insights on the first occurrence of Canis lupus in Europe. Sci Rep 2022; 12:2882. [PMID: 35217686 PMCID: PMC8881584 DOI: 10.1038/s41598-022-06812-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Here, we describe a partial cranium of a large canid dated at 406.5 ± 2.4 ka from the Middle Pleistocene of Ponte Galeria (Rome, Italy). The sample represents one of the few Middle Pleistocene remains of a wolf-like canid falling within the timeframe when the Canis mosbachensis–Canis lupus transition occurred, a key moment to understand the spread of the extant wolf (Canis lupus) in Europe. CT-based methods allow studying the outer and inner cranial anatomy (brain and frontal sinuses) of a selected sample of fossil and extant canids. Morphological and biometric results allowed to: (I) ascribe the cranium from Ponte Galeria to an adult Canis lupus, representing the first reliable occurrence of this taxon in Europe; (II) provide the content for a biochronological revision of the Middle Pleistocene record of European wolves.
Collapse
|
8
|
Modi A, Vai S, Posth C, Vergata C, Zaro V, Diroma MA, Boschin F, Capecchi G, Ricci S, Ronchitelli A, Catalano G, Lauria G, D'Amore G, Sineo L, Caramelli D, Lari M. More data on ancient human mitogenome variability in Italy: new mitochondrial genome sequences from three Upper Palaeolithic burials. Ann Hum Biol 2021; 48:213-222. [PMID: 34459344 DOI: 10.1080/03014460.2021.1942549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Recently, the study of mitochondrial variability in ancient humans has allowed the definition of population dynamics that characterised Europe in the Late Pleistocene and Early Holocene. Despite the abundance of sites and skeletal remains few data are available for Italy. AIM We reconstructed the mitochondrial genomes of three Upper Palaeolithic individuals for some of the most important Italian archaeological contexts: Paglicci (South-Eastern Italy), San Teodoro (South-Western Italy) and Arene Candide (North-Western Italy) caves. SUBJECTS AND METHODS We explored the phylogenetic relationships of the three mitogenomes in the context of Western Eurasian ancient and modern variability. RESULTS Paglicci 12 belongs to sub-haplogroup U8c, described in only two other Gravettian individuals; San Teodoro 2 harbours a U2'3'4'7'8'9 sequence, the only lineage found in Sicily during the Late Pleistocene and Early Holocene; Arene Candide 16 displays an ancestral U5b1 haplotype already detected in other Late Pleistocene hunter-gatherers from Central Europe. CONCLUSION Regional genetic continuity is highlighted in the Gravettian groups that succeeded in Paglicci. Data from one of the oldest human remains from Sicily reinforce the hypothesis that Epigravettian groups carrying U2'3'4'7'8'9 could be the first inhabitants of the island. The first pre-Neolithic mitogenome from North-Western Italy, sequenced here, shows more affinity with continental Europe than with the Italian peninsula.
Collapse
Affiliation(s)
- Alessandra Modi
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Stefania Vai
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Chiara Vergata
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Valentina Zaro
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | | | - Francesco Boschin
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Siena, Italy
| | - Giulia Capecchi
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Siena, Italy
| | - Stefano Ricci
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Siena, Italy
| | - Annamaria Ronchitelli
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Siena, Italy
| | - Giulio Catalano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Gabriele Lauria
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy.,Departamento de Ciencia Animal, Universitat Politecnica de Valencia, Valencia, Spain
| | - Giuseppe D'Amore
- Istituto di Studi Archeo-antropologici - I.S.A, Scandicci, Italy
| | - Luca Sineo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - David Caramelli
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| |
Collapse
|
9
|
Dog domestication and the dual dispersal of people and dogs into the Americas. Proc Natl Acad Sci U S A 2021; 118:2010083118. [PMID: 33495362 DOI: 10.1073/pnas.2010083118] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Advances in the isolation and sequencing of ancient DNA have begun to reveal the population histories of both people and dogs. Over the last 10,000 y, the genetic signatures of ancient dog remains have been linked with known human dispersals in regions such as the Arctic and the remote Pacific. It is suspected, however, that this relationship has a much deeper antiquity, and that the tandem movement of people and dogs may have begun soon after the domestication of the dog from a gray wolf ancestor in the late Pleistocene. Here, by comparing population genetic results of humans and dogs from Siberia, Beringia, and North America, we show that there is a close correlation in the movement and divergences of their respective lineages. This evidence places constraints on when and where dog domestication took place. Most significantly, it suggests that dogs were domesticated in Siberia by ∼23,000 y ago, possibly while both people and wolves were isolated during the harsh climate of the Last Glacial Maximum. Dogs then accompanied the first people into the Americas and traveled with them as humans rapidly dispersed into the continent beginning ∼15,000 y ago.
Collapse
|
10
|
Janssens LAA, Boudadi-Maligne M, Lawler DF, O'Keefe FR, van Dongen S. Morphology-based diagnostics of "protodogs." A commentary to Galeta et al., 2021, Anatomical Record, 304, 42-62, doi: 10.1002/ar.24500. Anat Rec (Hoboken) 2021; 304:2673-2684. [PMID: 33773061 PMCID: PMC9290061 DOI: 10.1002/ar.24624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/18/2022]
Abstract
In a recent article in this journal, Galeta et al., (2020) discussed eight Pleistocene “protodogs” and seven Pleistocene wolves. Those “protodogs” had been diagnosed in earlier publications, based on skull morphology. We re‐examined the Galeta et al. paper to offer comments on their observed outcomes, and the conclusion of presumed domestication. Of seven metrics that the authors used, five differed statistically between their two groups. However, from more elaborate studies, some of those same metrics had been rejected previously as not valid species‐distinguishing traits. In this respect, we do accept cranium size and wider palate as species‐distinguishing metrics. The physical size of their specimens was much larger than other archaeological specimens that have been accepted as dogs. Additionally, their sample size was small, compared to the number of available specimens, as shown from previous publications by the same group. Thus, we considered statistical differences that were found between groups in their study, and assessed whether the outcomes could have resulted from natural morphological variation. We examined a group of 73 dire wolves ((Aenocyon [Canis] dirus; Perri et al., 2021), using the same methods as used by Galeta et al., (2020). We could segregate two distinct morphological groups in our study, one having outcomes that were identical to the “protodogs” in Galeta et al. (2020). For the specimens of extinct dire wolves to segregate in the same way as the subjects from Galeta et al. indicates that natural variation probably was the driver of their observed outcomes, domestication being an unlikely assumption.
Collapse
Affiliation(s)
- Luc A A Janssens
- Department of Archaeology, Ghent University, UFO, Ghent, Belgium.,Department of Archaeology, University of Leiden, Leiden, The Netherlands
| | | | - Dennis F Lawler
- Center for American Archaeology, Kampsville, Illinois, USA.,Illinois State Museum, Springfield, Illinois, USA.,Pacific Marine Mammal Center, Laguna Beach, California, USA
| | | | - Stefan van Dongen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
11
|
Koupadi K, Fontani F, Ciucani MM, Maini E, De Fanti S, Cattani M, Curci A, Nenzioni G, Reggiani P, Andrews AJ, Sarno S, Bini C, Pelotti S, Caniglia R, Luiselli D, Cilli E. Population Dynamics in Italian Canids between the Late Pleistocene and Bronze Age. Genes (Basel) 2020; 11:genes11121409. [PMID: 33256122 PMCID: PMC7761486 DOI: 10.3390/genes11121409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
Dog domestication is still largely unresolved due to time-gaps in the sampling of regions. Ancient Italian canids are particularly understudied, currently represented by only a few specimens. In the present study, we sampled 27 canid remains from Northern Italy dated between the Late Pleistocene and Bronze Age to assess their genetic variability, and thus add context to dog domestication dynamics. They were targeted at four DNA fragments of the hypervariable region 1 of mitochondrial DNA. A total of 11 samples had good DNA preservation and were used for phylogenetic analyses. The dog samples were assigned to dog haplogroups A, C and D, and a Late Pleistocene wolf was set into wolf haplogroup 2. We present our data in the landscape of ancient and modern dog genetic variability, with a particular focus on the ancient Italian samples published thus far. Our results suggest there is high genetic variability within ancient Italian canids, where close relationships were evident between both a ~24,700 years old Italian canid, and Iberian and Bulgarian ancient dogs. These findings emphasize that disentangling dog domestication dynamics benefits from the analysis of specimens from Southern European regions.
Collapse
Affiliation(s)
- Kyriaki Koupadi
- Hellenic Ministry of Culture and Sports, Ephorate of Antiquities of the City of Athens, Makriyianni 2-4, 11742 Athens, Greece;
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (F.F.); (A.J.A.); (D.L.)
| | - Francesco Fontani
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (F.F.); (A.J.A.); (D.L.)
| | - Marta Maria Ciucani
- Section for Evolutionary Genomics, the GLOBE Institute, University of Copenhagen, Oester Voldgade 5-7, 1350 Copenhagen, Denmark;
| | - Elena Maini
- ArcheoLaBio—Research Centre for Bioarchaeology, Department of History and Cultures, University of Bologna, Via San Vitale 30, 48121 Ravenna, Italy; (E.M.); (A.C.)
| | - Sara De Fanti
- Department of Biological Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; (S.D.F.); (S.S.)
- Interdepartmental Centre “Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)”, University of Bologna, Via Petroni 26, 40126 Bologna, Italy
| | - Maurizio Cattani
- Department of History and Cultures, University of Bologna, Via San Vitale 30, 48121 Ravenna, Italy;
| | - Antonio Curci
- ArcheoLaBio—Research Centre for Bioarchaeology, Department of History and Cultures, University of Bologna, Via San Vitale 30, 48121 Ravenna, Italy; (E.M.); (A.C.)
| | - Gabriele Nenzioni
- Museo della Preistoria “Luigi Donini”, Via Fratelli Canova 49, 40068 San Lazzaro di Savena, BO, Italy;
| | - Paolo Reggiani
- Paleostudy, Via Martiri delle Foibe 1, 35028 Piove di Sacco, PD, Italy;
| | - Adam J. Andrews
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (F.F.); (A.J.A.); (D.L.)
- Department of Biological Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; (S.D.F.); (S.S.)
| | - Stefania Sarno
- Department of Biological Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; (S.D.F.); (S.S.)
| | - Carla Bini
- Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy; (C.B.); (S.P.)
| | - Susi Pelotti
- Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy; (C.B.); (S.P.)
| | - Romolo Caniglia
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Via Ca’ Fornacetta 9, 40064 Ozzano dell’Emilia, BO, Italy;
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (F.F.); (A.J.A.); (D.L.)
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (F.F.); (A.J.A.); (D.L.)
- Correspondence:
| |
Collapse
|