1
|
Kim H, Kim E, Na J, Lim S, Ban C. Effects of chain length and saturation of triacylglycerols on the characteristics and gastrointestinal digestion fates of curcumin-loaded triacylglycerol nanoparticles. Food Chem 2024; 460:140390. [PMID: 39047482 DOI: 10.1016/j.foodchem.2024.140390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/24/2024] [Accepted: 07/06/2024] [Indexed: 07/27/2024]
Abstract
This study assessed the effects of fatty acid length and saturation on the physicochemical, thermal, and gastrointestinal digestive characteristics of curcumin-loaded homo-triacylglycerol nanoparticles (C-NPs). All C-NPs had good colloidal stability and efficiently entrapped curcumin, regardless of their length and saturation. Tricaprylin NPs, with shorter chains, had a smaller size and emulsifier surface load. Curcumin was released faster from low-melting C-NPs (tricaprylin and triolein) than those with high-melting-point (trimyristin, tripalmitin, and tristearin); however, both were negligible without lipolysis. None of the C-NPs underwent significant aggregation, coalescence, or breakdown during digestion before the small intestine. Notably, longer and more saturated chains resulted in a slower initial rate and lower degree of lipolysis in the small intestine. However, greater bioaccessibility of curcumin was observed only with longer chains (tricaprylin, 70.72%; trimyristin, 78.05%; tripalmitin, 85.09%; tristearin, 89.65%; triolein, 89.71%). These findings could be valuable for the development of rational curcumin formulations for functional foods.
Collapse
Affiliation(s)
- Hyeongjin Kim
- Department of Environmental Horticulture, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Eunghee Kim
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Junhyeok Na
- Department of Environmental Horticulture, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Seokwon Lim
- Department of Food Science and Biotechnology, Gachon University, 1342, Seongnam-daero Seongnam, Gyeonggi 13120, Republic of Korea.
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
2
|
Im JK, Seo DH, Yu JS, Yoo SH. Efficient and novel biosynthesis of myricetin α-triglucoside with improved solubility using amylosucrase from Deinococcus deserti. Int J Biol Macromol 2024; 273:133205. [PMID: 38885871 DOI: 10.1016/j.ijbiomac.2024.133205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Although myricetin (3,3',4',5,5',7-hexahydroxyflavone, MYR) has a high antioxidant capacity and health functions, its use as a functional food material is limited owing to its low stability and water solubility. Amylosucrase (ASase) is capable of biosynthesizing flavonol α-glycoside using flavonols as acceptor molecules and sucrose as a donor molecule. Here, ASase from Deinococcus deserti (DdAS) efficiently biosynthesizes a novel MYR α-triglucoside (MYRαG3) using MYR as the acceptor molecule. Comparative homology analysis and computational simulation revealed that DdAS has a different active pocket for the transglycosylation reaction. DdAS produced MYRαG3 with a conversion efficiency of 67.4 % using 10 mM MYR and 50 mM sucrose as acceptor and donor molecules, respectively. The structure of MYRαG3 was identified as MYR 4'-O-4″,6″-tri-O-α-D-glucopyranoside using NMR and LC-MS. In silico analysis confirmed that DdAS has a distinct active pocket compared to other ASases. In addition, molecular docking simulations predicted the synthetic sequence of MYRαG3. Furthermore, MYRαG3 showed a similar DPPH radical scavenging activity of 49 %, comparable to MYR, but with significantly higher water solubility, which increased from 0.03 μg/mL to 511.5 mg/mL. In conclusion, this study demonstrated the efficient biosynthesis of a novel MYRαG3 using DdAS and highlighted the potential of MYRαG3 as a functional material.
Collapse
Affiliation(s)
- Joong-Ki Im
- Department of Food Science & Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science & Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Jae Sik Yu
- Department of Integrative Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
3
|
Sultana A, Zare M, Thomas V, Kumar TS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Alidadi H, Ashtari A, Samimi A, Karami MA, Khorsandi L. Myricetin loaded in solid lipid nanoparticles induces apoptosis in the HT-29 colorectal cancer cells via mitochondrial dysfunction. Mol Biol Rep 2022; 49:8537-8545. [PMID: 35767106 DOI: 10.1007/s11033-022-07683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Among the flavonoids, Myricetin (MCN) has negligible side effects and anti-cancer properties. However, the therapeutic potential of MCN has been limited mainly by its low bioavailability. Nanocarriers improve the bioavailability and stability of flavonoids. The toxic effects of MCN loaded in solid lipid nanoparticles (MCN-SLNs) on the HT-29 human colorectal cancer cells were investigated in this study. METHODS AND RESULTS HT-29 cells were exposed to the 30 µmol MCN or MCN-SLNs for 24 h. Colony formation, cell viability, apoptosis, and expression of the Bax, Bcl-2, and AIF (apoptosis-inducing factor) have been investigated. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) generation were also measured. The MCN-SLNs with appropriate characteristics and a slow sustained MCN release until 48 h made. MCN-SLNs could diminish colony numbers and survival of the HT-29 cells. The apoptosis index of MCN-SLNs-treated cells significantly increased compared to the free MCN (p < 0.001). The expression of Bax and AIF were elevated (p < 0.01 and p < 0.001, respectively) while Bcl-2 expression was decreased in MCN-SLNs treatment (p < 0.05). Moreover, MCN-SLNs significantly enhanced the ROS formation and reduced MMP compared to the free MCN-treated cells (p < 0.01). CONCLUSIONS The SLN formulation of MCN can effectively induce colon cancer cell death by raising ROS formation and activating the apoptosis process.
Collapse
Affiliation(s)
- Hadis Alidadi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Ashtari
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azin Samimi
- Legal Medicine Research Center, Legal Medicine Organization, Ahvaz, Iran
| | - Masoud Ali Karami
- School of Pharmacy, Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Kim DJ, Kim J, Lee DH, Lee J, Woo HM. DeepTESR: A Deep Learning Framework to Predict the Degree of Translational Elongation Short Ramp for Gene Expression Control. ACS Synth Biol 2022; 11:1719-1726. [PMID: 35502843 DOI: 10.1021/acssynbio.2c00202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlling translational elongation is essential for efficient protein synthesis. Ribosome profiling has revealed that the speed of ribosome movement is correlated with translational efficiency in the translational elongation ramp. In this work, we present a new deep learning model, called DeepTESR, to predict the degree of translational elongation short ramp (TESR) from mRNA sequence. The proposed deep learning model exhibited superior performance in predicting the TESR scores for 226 981 TESR sequences, resulting in the mean absolute error (MAE) of 0.285 and a coefficient of determination R2 of 0.627, superior to the conventional machine learning models (e.g., MAE of 0.335 and R2 of 0.571 for LightGBM). We experimentally validated that heterologous fluorescence expression of proteins with randomly selected TESR was moderately correlated with the predictions. Furthermore, a genome-wide analysis of TESR prediction in the 4305 coding sequences of Escherichia coli showed conserved TESRs over the clusters of orthologous groups. In this sense, DeepTESR can be used to predict the degree of TESR for gene expression control and to decipher the mechanism of translational control with ribosome profiling. DeepTESR is available at https://github.com/fmblab/DeepTESR.
Collapse
|
6
|
Halder T, Patel B, Acharya N. Design and optimization of myricetin encapsulated nanostructured lipid carriers: In-vivo assessment against cognitive impairment in amyloid beta (1–42) intoxicated rats. Life Sci 2022; 297:120479. [DOI: 10.1016/j.lfs.2022.120479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
|
7
|
Arora G, Kassir M, Patil A, Sadeghi P, Gold MH, Adatto M, Grabbe S, Goldust M. Treatment of Axillary hyperhidrosis. J Cosmet Dermatol 2021; 21:62-70. [PMID: 34416078 DOI: 10.1111/jocd.14378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/28/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Axillary hyperhidrosis characterized by excessive sweating in the axillary regions is a frustrating chronic autonomic disorder leading to social embarrassment, impaired quality of life and usually associated with palmoplantar hyperhidrosis. Identifying the condition and its cause is central to the management. AIM The aim of this article is to discuss treatment options for axillary hyperhidrosis. METHODS Comprehensive literature search using PubMed and Google Scholar was performed to review relevant published articles related to diagnosis and treatment of axillary hyperhidrosis. RESULTS Treatment modalities for axillary hyperhydrosis vary from topical and systemic agents to injectables, newer devices and surgical measures. None except for physical measures using devices or surgery, which destroys the sweat glands to remove them, is possibly permanent and most are associated with attendant side effects. CONCLUSION Several treatments including medical and surgical option are available for the treatment of axillary hyperhydrosis. Patient education is important component of its management. Individualized approach of management is necessary for optimal outcome of treatment.
Collapse
Affiliation(s)
- Gulhima Arora
- Department of Dermatology, Mehektagul Dermaclinic, New Delhi, India
| | | | - Anant Patil
- Department of Pharmacology, Dr. DY Patil Medical College, Navi Mumbai, India
| | - Payam Sadeghi
- Department of Plastic Surgery, Cleveland Clinic, Cleveland Clinic Main Campus, Cleveland, Ohio, USA
| | - Michael H Gold
- Gold Skin Care Center, Tennessee Clinical Research Center, Nashville, Tennessee, USA
| | - Maurice Adatto
- Skinpulse Dermatology and Laser Centre, Geneva, Switzerland
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
8
|
Ban C, Kwoen DH. Objective Quantitation of Focal Sweating Areas Using a Mouse Sweat-assay Model. Bio Protoc 2021; 11:e4047. [PMID: 34250213 DOI: 10.21769/bioprotoc.4047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 11/02/2022] Open
Abstract
In vivo sweat quantitation assays are required for the development of drugs for the management of focal hyperhidrosis before clinical trials; however, in vivo assays, particularly mouse models, are rare. Even in sweat assays using mice, sweating is quantitated by manually counting the number of sweating spots, which can contribute to various errors owing to arbitrary judgment. In this study, we developed a mouse sweat-assay model and a method for quantitating the amount of sweating to remove possible errors. The use of the iodine-starch test in the castor oil-covered hind footpad skin of anesthetized mice resulted in the sweating area being stained blue-black. After the anesthesia and treatment with drugs (pilocarpine, glycopyrrolate, botulinum neurotoxin, myricetin, and myricetin-loaded lipid nanoparticles), the remaining area of the footpad skin was eliminated from the acquired footpad images using ImageJ. Blue pixels extracted from the footpad image are automatically adjusted using the Phansalkar method, where the percentage of the blue area was determined based on the whole hind footpad skin area, finally indicating the percentage of the sweating area. Using this mouse model and analysis for sweat assays, a clear difference between the control group and antiperspirant-administered group was observed with respect to the sweating area % with no error. In conclusion, this assay can be used as a preclinical tool to screen potential antiperspirant drugs. Graphic abstract: Overview of the mouse-model sweat assay and objective quantitation of the focal sweating area.
Collapse
Affiliation(s)
- Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Republic of Korea
| | - Dae-Hyuk Kwoen
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Institute of Biomolecule Control, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Biologics Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Interdisciplinary Program in BioCosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Lawal TA, Patankar A, Todd JJ, Razaqyar MS, Chrismer IC, Zhang X, Waite MR, Jain MS, Emile-Backer M, Witherspoon JW, Liu CY, Grunseich C, Meilleur KG. Ryanodine Receptor 1-Related Myopathies: Quantification of Intramuscular Fatty Infiltration from T1-Weighted MRI. J Neuromuscul Dis 2021; 8:657-668. [PMID: 33646171 PMCID: PMC8385519 DOI: 10.3233/jnd-200549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background: Ryanodine receptor 1-related myopathy (RYR1-RM) can present with a selective pattern and gradient of intramuscular fatty infiltration (IMFI) on magnetic resonance imaging (MRI). Objective: To demonstrate an automated protocol for quantification of IMFI in the lower extremity muscles of individuals with RYR1-RM using T1-weighted MRI and to examine the relationships of IMFI with motor function and clinical severity. Methods: Axial images of the lower extremity muscles were acquired by T1-weighted fast spin-echo and short tau inversion recovery (STIR) sequences. A modified ImageJ-based program was used for quantification. IMFI data was analyzed by mode of inheritance, motor function, and clinical severity. Results: Upper and lower leg IMFI from 36 genetically confirmed and ambulatory RYR1-RM affected individuals (26 dominant and 10 recessive) were analyzed using Grey-scale quantification. There was no statistically significant difference in IMFI between dominant and recessive cases in upper or lower legs. IMFI in both upper and lower legs was inversely correlated with participant performance on the motor function measure (MFM-32) total score (upper leg: p < 0.001; lower leg: p = 0.003) and the six-minute walk test (6MWT) distance (upper leg: p < 0.001; lower leg: p = 0.010). There was no significant difference in mean IMFI between participants with mild versus severe clinical phenotypes (p = 0.257). Conclusion: A modified ImageJ-based algorithm was able to select and quantify fatty infiltration in a cohort of heterogeneously affected individuals with RYR1-RM. IMFI was not predictive of mode of inheritance but showed strong correlation with motor function and capacity tests including MFM-32 and 6MWT, respectively.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Aneesh Patankar
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NIH), Bethesda, MD, USA
| | - Joshua J Todd
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Muslima S Razaqyar
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Irene C Chrismer
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Xuemin Zhang
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Melissa R Waite
- Mark O. Hatfield Clinical Research Center, NIH, Bethesda, MD, USA
| | - Minal S Jain
- Mark O. Hatfield Clinical Research Center, NIH, Bethesda, MD, USA
| | - Magalie Emile-Backer
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Jessica W Witherspoon
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| | - Chia-Ying Liu
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NIH), Bethesda, MD, USA
| | - Katherine G Meilleur
- Tissue Injury Branch, National Institute of Nursing Research (NIH), Bethesda, MD, USA
| |
Collapse
|
10
|
Li Z, Ma W, Ali I, Zhao H, Wang D, Qiu J. Green and Facile Synthesis and Antioxidant and Antibacterial Evaluation of Dietary Myricetin-Mediated Silver Nanoparticles. ACS OMEGA 2020; 5:32632-32640. [PMID: 33376900 PMCID: PMC7758972 DOI: 10.1021/acsomega.0c05002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 05/02/2023]
Abstract
Myricetin (MY) is a dietary flavonoid which exhibits a wide spectrum of biological properties, viz., antibacterial, antioxidant, anticancer, and so forth. The lower solubility in aqueous medium and hence lesser bioavailability of MY limits the use of such dietary flavonoids in further in vivo research. To overcome bioavailability limitations, a number of drug-delivery systems are being investigated. Herein, MY-mediated silver nanoparticles (MY-AgNPs) were synthesized by a green approach to improve the therapeutic efficacy of MY. MY-AgNPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffraction (XRD). The results showed that the dispersion of AgNPs had the maximum UV-vis absorption at about 410 nm. The synthesized nanoparticles were almost spherical. MY-AgNPs were further investigated against human pathogenic bacteria, and their antioxidant potential was also determined. The free radical scavenging rate was about 60-87%. MY-AgNPs had good antibacterial activity against Escherichia coli and Salmonella at room temperature with minimum inhibitory concentrations of 10-4 and 10-5 g/L, respectively.
Collapse
Affiliation(s)
- Zhao Li
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Wenya Ma
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
- College
of Life Science, Shandong Normal University, Jinan 250014, China
| | - Iftikhar Ali
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
- Department
of Chemistry, Karakoram International University, Gilgit 15100, Pakistan
| | - Huanzhu Zhao
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Daijie Wang
- School
of Pharmaceutical Sciences and Key Laboratory for Applied Technology
of Sophisticated Analytical Instruments of Shandong Province, Shandong
Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Jiying Qiu
- Institute
of Agro-Food Science and Technology, Shandong
Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|