1
|
Yang R, Roshani D, Gao B, Li P, Shang N. Metallothionein: A Comprehensive Review of Its Classification, Structure, Biological Functions, and Applications. Antioxidants (Basel) 2024; 13:825. [PMID: 39061894 PMCID: PMC11273490 DOI: 10.3390/antiox13070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Metallothionein is a cysteine-rich protein with a high metal content that is widely found in nature. In addition to heavy metal detoxification, metallothionein is well known as a potent antioxidant. The high sulfhydryl content of metallothionein confers excellent antioxidant activity, enabling it to effectively scavenge free radicals and mitigate oxidative stress damage. In addition, metallothionein can play a neuroprotective role by alleviating oxidative damage in nerve cells, have an anticancer effect by enhancing the ability of normal cells to resist unfavorable conditions through its antioxidant function, and reduce inflammation by scavenging reactive oxygen species. Due to its diverse biological functions, metallothionein has a broad potential for application in alleviating environmental heavy metal pollution, predicting and diagnosing diseases, and developing skin care products and health foods. This review summarizes the recent advances in the classification, structure, biological functions, and applications of metallothionein, focusing on its powerful antioxidant effects and related functions.
Collapse
Affiliation(s)
- Ruoqiu Yang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Dumila Roshani
- College of Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China;
| | - Boya Gao
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Pinglan Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Nan Shang
- College of Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China;
| |
Collapse
|
2
|
Miura M, Furuya T, Hashimoto M, Shiratani Y, Inoue T, Yunde A, Okimatsu S, Hosokawa H, Maki S, Ohtori S. Differences in the expression of myelopathy in a rat model of chronic spinal cord compression. J Spinal Cord Med 2024; 47:450-458. [PMID: 35993796 PMCID: PMC11044740 DOI: 10.1080/10790268.2022.2111048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
CONTEXT/OBJECTIVE The degree of spinal cord compression does not always parallel neurological symptoms. We considered that some compensatory neuroprotective mechanism underlies the expression of this neurological phenotype. Oxygen-regulated-protein 150 (ORP150) is neuroprotective and expressed in neurons in response to neuronal ischemia. We sought to elucidate whether ORP150 expression is associated with the severity and variation of neurological recovery in our rat model of chronic spinal cord compression. METHODS We made a rat model of chronic spinal cord compression inserting an expandable water-absorbing polyurethane sheet. A neurological behavioral assessment of the severity of paralysis was performed for 10 weeks postoperatively. The rat model was defined as two groups: a myelopathy group with decreased locomotor function and an asymptomatic group. At 10 weeks postoperatively, the spinal cord of the cervical segment was resected for histology and qPCR. RESULTS Slowly progressive paralysis appeared at 5-10 weeks postoperatively in 53% of the rats with spinal cord compression. The asymptomatic group had no histological changes indicative of myelopathy. Histology and qPCR showed increased expression of ORP150 in the asymptomatic group, but the ratio of ORP150-positive neuron in the two groups was not significantly different. CONCLUSION The expression of ORP150 in neurons associated with spinal cord compression suggested that the spinal cord was under ischemic stress due to compression, but relation to the development of myelopathy was unclear. The results suggested that some other compensatory mechanisms may exist in response to spinal cord compression in asymptomatic rats.
Collapse
Affiliation(s)
- Masataka Miura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeo Furuya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Yuki Shiratani
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takaki Inoue
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Yunde
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sho Okimatsu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Hosokawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Maki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Kim HW, Yong H, Shea GKH. Blood-spinal cord barrier disruption in degenerative cervical myelopathy. Fluids Barriers CNS 2023; 20:68. [PMID: 37743487 PMCID: PMC10519090 DOI: 10.1186/s12987-023-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/12/2023] [Indexed: 09/26/2023] Open
Abstract
Degenerative cervical myelopathy (DCM) is the most prevalent cause of spinal cord dysfunction in the aging population. Significant neurological deficits may result from a delayed diagnosis as well as inadequate neurological recovery following surgical decompression. Here, we review the pathophysiology of DCM with an emphasis on how blood-spinal cord barrier (BSCB) disruption is a critical yet neglected pathological feature affecting prognosis. In patients suffering from DCM, compromise of the BSCB is evidenced by elevated cerebrospinal fluid (CSF) to serum protein ratios and abnormal contrast-enhancement upon magnetic resonance imaging (MRI). In animal model correlates, there is histological evidence of increased extravasation of tissue dyes and serum contents, and pathological changes to the neurovascular unit. BSCB dysfunction is the likely culprit for ischemia-reperfusion injury following surgical decompression, which can result in devastating neurological sequelae. As there are currently no therapeutic approaches specifically targeting BSCB reconstitution, we conclude the review by discussing potential interventions harnessed for this purpose.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hu Yong
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Graham Ka Hon Shea
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Pu PM, Li ZY, Dai YX, Sun YL, Wang YJ, Cui XJ, Yao M. Analysis of gene expression profiles and experimental validations of a rat chronic cervical cord compression model. Neurochem Int 2023:105564. [PMID: 37286109 DOI: 10.1016/j.neuint.2023.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
Cervical spondylotic myelopathy (CSM) is a severe non-traumatic spinal cord injury (SCI) wherein the spinal canal and cervical cord are compressed due to the degeneration of cervical tissues. To explore the mechanism of CSM, the ideal model of chronic cervical cord compression in rats was constructed by embedding a polyvinyl alcohol polyacrylamide hydrogel in lamina space. Then, the RNA sequencing technology was used to screen the differentially expressed genes (DEGs) and enriched pathways among intact and compressed spinal cords. A total of 444 DEGs were filtered out based on the value of log2(Compression/Sham); these were associated with IL-17, PI3K-AKT, TGF-β, and Hippo signaling pathways according to the GSEA, KEGG, and GO analyses. Transmission electron microscopy indicated the changes in mitochondrial morphology. Western blot and immunofluorescent staining revealed neuronal apoptosis, astrogliosis and microglial neuroinflammation in the lesion area. Specifically, the expression of apoptotic indicators, such as Bax and cleaved caspase-3, and inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, were upregulated. The activation of IL-17 signaling pathways was observed in microglia instead of neurons or astrocytes, the activation of TGF-β and inhibition of Hippo signaling pathways were detected in astrocytes instead of neurons or microglia, and the inhibition of PI3K-AKT signaling pathway was discovered in neurons rather than microglia of astrocytes in the lesion area. In conclusion, this study indicated that neuronal apoptosis was accompanied by inhibiting of the PI3K-AKT pathway. Then, the activation of microglia IL-17 pathway and NLRP3 inflammasome effectuated the neuroinflammation, and astrogliosis was ascribed to the activation of TGF-β and the inhibition of the Hippo pathway in the chronic cervical cord of compression. Therefore, therapeutic methods targeting these pathways in nerve cells could be promising CSM treatments.
Collapse
Affiliation(s)
- Pei-Min Pu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yu-Xiang Dai
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yue-Li Sun
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
5
|
Zonisamide improves Fas/FasL-mediated apoptosis and inflammation in a degenerative cervical myelopathy rat model. Tissue Cell 2023; 81:102024. [PMID: 36669388 DOI: 10.1016/j.tice.2023.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Degenerative cervical myelopathy (DCM) is a severe condition of the spinal cord caused by chronic compression. However, no studies to date have examined the effects of zonisamide (ZNS) on DCM via the Fas/FasL-mediated pathway. The aim of this study was to investigate the effects of ZNS on a DCM rat model and to explore the potential mechanisms. First, 40 adult Sprague-Dawley rats were used to establish the DCM rat model and were individually divided into four groups: the Sham group, DCM model group (DCM), ZNS group (DCM model rats treated with ZNS, 30 mg/kg/day), and ZNS + CD95 group (DCM model rats treated with ZNS and CD95). Histopathology injury and cell apoptosis, Fas and Fas ligand (FasL) expression and Fas/FasL relative protein levels were detected by hematoxylin and eosin staining, TUNEL assay, and immunofluorescence and western blotting, respectively. The results of our study demonstrated that ZNS could promote motor recovery while reversing histopathological injury and cell apoptosis in DCM rats. Moreover, Iba-1, Fas and FasL expression in DCM rats was decreased, accompanied by a decrease in cleaved caspase-3/caspase-3, cleaved caspase-8/caspase-8, cleaved caspase-9/caspase-9, cleaved caspase-10/caspase-10 and B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax) levels. All these results revealed that ZNS attenuates DCM injury in a rat model via the regulation of Fas and FasL signaling. Our study indicated that ZNS had beneficial effects on DCM and thus provided a novel theoretical approach for subsequent academic and clinical research on DCM injury.
Collapse
|
6
|
Long HQ, Ren ZX, Xu JH, Cheng X, Xu GX. Pathophysiological mechanisms of chronic compressive spinal cord injury due to vascular events. Neural Regen Res 2023; 18:790-796. [DOI: 10.4103/1673-5374.353485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Wang S, Zhang J, Peng S, Cao J, Du W, Zhang Y, Gong Z, Zhang L, Shen Y. Relationship between Severity of Disease and Postoperative Neurological Recovery in Patients with Cervical Spondylotic Myelopathy Combined with Developmental Spinal Stenosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9800993. [PMID: 36204128 PMCID: PMC9532063 DOI: 10.1155/2022/9800993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
Objective The study aimed to investigate the correlation between the severity of disease and postoperative neurological recovery in patients with cervical spondylotic myelopathy (CSM) combined with developmental spinal stenosis. Methods A retrospective analysis of the clinical data of 114 CSM patients combined with developmental spinal stenosis admitted to our hospital from June 2019 to June 2020 was performed. All of the patients who underwent posterior cervical unidoor vertebroplasty were divided into the mild, moderate, and severe groups according to the Torg-Pavlov ratio. The clinical data including patients' age, course of spinal cord high signal change, and first onset age were collected. The recovery time, preoperative, and postoperative Japanese Orthopaedic Association (JOA) scores of patients in each group were compared with the calculation of the improvement rate. The correlation between the severity of disease and postoperative neurological recovery in CSM patients combined with developmental spinal stenosis was analyzed by Pearson correlation. The factors influencing postoperative neurological recovery were analyzed using multivariate logistic regression analysis. The receiver operating characteristic curve (AUC) was used to evaluate the value of each influencing factor in predicting postoperative recovery. Results Significant differences were observed in the proportion of linear hyperintensity changes in the spinal cord, the age of first onset, the course of the disease, and the Torg-Pavlov ratio among the mild, moderate, and severe groups (P < 0.05). The postoperative recovery time of the moderate and severe groups was significantly higher than that of the mild group, while the preoperative JOA score was significantly lower than that of the mild group. On the other hand, the postoperative recovery time of the severe group was prominently higher than that of the moderate group, whereas the preoperative JOA score was observably lower than that of the moderate group (P < 0.05). Pearson correlation analysis showed that the postoperative recovery time was significantly negatively correlated with the Torg-Pavlov ratio, age at first onset, and disease course (r = -0.359, -0.502, -0.368, P < 0.05), while it was positively correlated with spinal cord linear high-signal changes (r = 0.641, P < 0.05). Multifactorial logistic regression analysis revealed that the Torg-Pavlov ratio, age at first onset, and disease course were protective factors, while spinal cord linear high-signal alterations were risk factors affecting the recovery time of postoperative neurological function (P < 0.05). The area under the curve (AUC) of the Torg-Pavlov ratio, linear hyperintensity changes in the spinal cord, age at first onset, and disease duration in predicting the postoperative neurological recovery time were 0.794, 0.767, 0.772, and 0.802, respectively. The AUC predicted by the combined detection of each factor was 0.876, which was better than the area under the curve of single prediction. Conclusion Patients with CSM combined with developmental spinal stenosis were characterized by younger age of onset, a short course of the disease, and linear changes in the spinal cord high signal. The degree of developmental spinal stenosis may affect the postoperative recovery time of neurological function in CSM patients but had little effect on postoperative neurological recovery. The Torg-Pavlov ratio, age of first onset, course of the disease, and changes in the spinal cord linear hyperintensity were the factors that affected postoperative neurological recovery, which may provide a basis for reasonably predicting a postoperative neurological recovery in patients with CSM combined with developmental spinal stenosis.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingtao Zhang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuo Peng
- Scientific Research Division, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junming Cao
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Du
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yu Zhang
- Department of Orthopaedics, Hebei Geriatric Hospital, Qinhuangda, China
| | - Zhixin Gong
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Zhang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Shen
- Department of Spine surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Neuroinflammation and apoptosis after surgery for a rat model of double-level cervical cord compression. Neurochem Int 2022; 157:105340. [DOI: 10.1016/j.neuint.2022.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022]
|
9
|
Ma Q, Wang M, Cai H, Li F, Fu S, Liu Y, Zhao Y. A sensitive and rapid detection of glutathione based on a fluorescence-enhanced "turn-on" strategy. J Mater Chem B 2021; 9:3563-3572. [PMID: 33909744 DOI: 10.1039/d1tb00232e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glutathione (GSH) plays important roles in the human body including protecting cells from oxidative damages and maintaining cellular redox homeostasis. Thus, developing a fast and sensitive method for detecting GSH levels in living bodies is of great importance. Many methods have been developed and used for GSH detection, such as high-performance liquid chromatography, capillary electrophoresis, and fluorescence resonance energy-based methods. However, these methods often lack sensitivity as well as efficiency. Herein, a rapid and sensitive method for glutathione detection was developed based on a fluorescence-enhanced "turn-on" strategy. In this study, a unique and versatile bifunctional linker 3-[(2-aminoethyl) dithio]propionic acid (AEDP)-modified gold nanoparticle (Au@PLL-AEDP-FITC) probe was designed for the simple, highly sensitive intracellular GSH detection, combined with the FRET technique. In the presence of GSH, the disulfide bonds of AEDP on Au@PLL-AEDP-FITC were broken through competition with GSH, and FITC was separated from gold nanoparticles, making the fluorescence signal switch to the "turn on" state. A change in the fluorescence signal intensity has a great linear positive correlation with GSH concentration, in the linear range from 10 nM to 180 nM (R2 = 0.9948), and the limit of detection (LOD) of 3.07 nM, which was lower than other reported optical nanosensor-based methods. Au@PLL-AEDP-FITC also has great selectivity for GSH, making it promising for application in complex biological systems. The Au@PLL-AEDP-FITC probe was also successfully applied in intracellular GSH imaging in HeLa cells with confocal microscopy. In short, the Au@PLL-AEDP-FITC probe-based fluorescence-enhanced "turn-on" strategy is a sensitive, fast, and effective method for GSH detection as compared with other methods. It can be applied in complex biological systems such as cell systems, with promising biological-medical applications in the future.
Collapse
Affiliation(s)
- Qianru Ma
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Minning Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Huahuan Cai
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Fulai Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Songsen Fu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Yan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China. and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, P. R. China and Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315221, P. R. China
| |
Collapse
|
10
|
Zonisamide upregulates neuregulin-1 expression and enhances acetylcholine receptor clustering at the in vitro neuromuscular junction. Neuropharmacology 2021; 195:108637. [PMID: 34097946 DOI: 10.1016/j.neuropharm.2021.108637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/27/2023]
Abstract
Decreased acetylcholine receptor (AChR) clustering compromises signal transmission at the neuromuscular junction (NMJ) in myasthenia gravis, congenital myasthenic syndromes, and motor neuron diseases. Although the enhancement of AChR clustering at the NMJ is a promising therapeutic strategy for these maladies, no drug is currently available for this enhancement. We previously reported that zonisamide (ZNS), an anti-epileptic and anti-Parkinson's disease drug, enhances neurite elongation of the primary spinal motor neurons (SMNs). As nerve sprouting occurs to compensate for the loss of AChR clusters in human diseases, we examined the effects of ZNS on AChR clustering at the NMJ. To this end, we established a simple and quick co-culture system to reproducibly make in vitro NMJs using C2C12 myotubes and NSC34 motor neurons. ZNS at 1-20 μM enhanced the formation of AChR clusters dose-dependently in co-cultured C2C12 myotubes but not in agrin-treated single cultured C2C12 myotubes. We observed that molecules that conferred responsiveness to ZNS were not secreted into the co-culture medium. We found that 10 μM ZNS upregulated the expression of neuregulin-1 (Nrg1) in co-cultured cells but not in single cultured C2C12 myotubes or single cultured NSC34 motor neurons. In accordance with this observation, inhibition of the Nrg1/ErbB signaling pathways nullified the effect of 10 μM ZNS on the enhancement of AChR clustering in in vitro NMJs. Although agrin was not induced by 10 μM ZNS in co-cultured cells, anti-agrin antibody attenuated ZNS-mediated enhancement of AChR clustering. We conclude that ZNS enhances agrin-dependent AChR-clustering by upregulating the Nrg1/ErbB signaling pathways in the presence of NMJs.
Collapse
|
11
|
Koshimizu H, Ohkawara B, Nakashima H, Ota K, Kanbara S, Inoue T, Tomita H, Sayo A, Kiryu-Seo S, Konishi H, Ito M, Masuda A, Ishiguro N, Imagama S, Kiyama H, Ohno K. Zonisamide ameliorates neuropathic pain partly by suppressing microglial activation in the spinal cord in a mouse model. Life Sci 2020; 263:118577. [DOI: 10.1016/j.lfs.2020.118577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/26/2020] [Accepted: 10/03/2020] [Indexed: 01/19/2023]
|