1
|
Mehra P, Kumar A. Emerging importance of stool preservation methods in OMICS studies with special focus on cancer biology. Cell Biochem Funct 2024; 42:e4063. [PMID: 38961596 DOI: 10.1002/cbf.4063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 07/05/2024]
Abstract
The intricate consortium of microorganisms in the human gut plays a crucial role in different physiological functions. The complex known-unknown elements of the gut microbiome are perplexing and the absence of standardized procedures for collecting and preserving samples has hindered continuous research in comprehending it. The technological bias produced because of lack of standard protocols has affected the reproducibility of results. The complex nature of diseases like colorectal cancer, gastric cancer, hepatocellular carcinoma and breast cancer require a thorough understanding of its etiology for an efficient and timely diagnosis. The designated protocols for collection and preservation of stool specimens have great variance, hence generate inconsistencies in OMICS studies. Due to the complications associated to the nature of sample, it is important to preserve the sample to be studied later in a laboratory or to be used in the future research purpose. Stool preservation is gaining importance due to the increased use of treatment options like fecal microbiota transplantation to cure conditions like recurrent Clostridium difficile infections and for OMICS studies including metagenomics, metabolomics and culturomics. This review provides an insight into the importance of omics studies for the identification and development of novel biomarkers for quick and noninvasive diagnosis of various diseases.
Collapse
Affiliation(s)
- Parul Mehra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
2
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
3
|
Sioziou E, Kakouri A, Bosnea L, Samelis J. Antilisterial activity of raw sheep milk from two native Epirus breeds: Culture-dependent identification, bacteriocin gene detection and primary safety evaluation of the antagonistic LAB biota. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100209. [PMID: 38116185 PMCID: PMC10727937 DOI: 10.1016/j.crmicr.2023.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Raw milk from native small ruminant breeds in Epirus, Greece, is a valuable natural source of autochthonous lactic acid bacteria (LAB) strains with superior biotechnological properties. In this study, two bulk milks (RM1, RM2) from two local sheep yards, intended for traditional Kefalotyri cheese production, were preselected for bacteriocin-like antilisterial activity by in vitro tests. Their antagonistic LAB biota was quantified followed by polyphasic (16S rRNA gene sequencing; IGS for Enterococcus; a multiplex-PCR for Leuconostoc) identification of 42 LAB (RM1/18; RM2/24) isolates further evaluated for bacteriocin encoding genes and primary safety traits. Representative isolates of the numerically dominant mesophilic LAB were Leuconostoc mesenteroides (10) in both RMs, Streptococcus parauberis (7) in RM2, and Lactococcus lactis (1) in RM1; the subdominant thermophilic LAB isolates were Enterococcus durans (8), E. faecium (6), E. faecalis (3), E. hirae (1), E. hermanniensis (1), Streptococcus lutetiensis (2), S. equinus (1) and S. gallolyticus (1). Based on their rpoB, araA, dsr and sorA profiles, six Ln. mesenteroides strains (8 isolates) were atypical lying between the subspecies mesenteroides and dextranicum, whereas two strains profiled with Ln. mesenteroides subsp. jonggajibkimchi that is first-time reported in Greek dairy food. Two RM1 E. faecium strain biotypes (3 isolates) showed strong, enterocin-mediated antilisterial activity due to entA/entB/entP possession. One E. durans from RM1 possessed entA and entP, while additional nine RM2 isolates of the E. faecium/durans group processed entA or entP singly. All showed direct (cell-associated) antilisterial activity only, as also both S. lutetiensis strains from RM2 did strongly. Desirably, no LAB isolate was β-hemolyrtic, or cytolysin-positive, or possessed vanA, vanB for vancomycin resistance, or agg, espA, hyl, and IS16 virulence genes. However, all three E. faecalis from RM2 possessed gelE and/or ace virulence genes. In conclusion, all Ln. mesenteroides strains, the two safe, enterocin A-B-P-producing E. faecium strains, and the two antilisterial S. lutetiensis strains should be validated further as potential costarter or adjunct cultures in Kefalotyri cheese. The prevalence of α-hemolytic pyogenic streptococci in raw milk, mainly S. parauberis in RM2, requires consideration in respect to subclinical mastitis in sheep and the farm hygiene overall.
Collapse
Affiliation(s)
- Eleni Sioziou
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DIMITRA, Ethnikis Antistaseos 3, Katsikas, Ioannina 45221, Greece
| | - Athanasia Kakouri
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DIMITRA, Ethnikis Antistaseos 3, Katsikas, Ioannina 45221, Greece
| | - Loulouda Bosnea
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DIMITRA, Ethnikis Antistaseos 3, Katsikas, Ioannina 45221, Greece
| | - John Samelis
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DIMITRA, Ethnikis Antistaseos 3, Katsikas, Ioannina 45221, Greece
| |
Collapse
|
4
|
Wang A, Zhou M, Chen Q, Jin H, Xu G, Guo R, Wang J, Lai R. Functional Analyses of Three Targeted DNA Antimicrobial Peptides Derived from Goats. Biomolecules 2023; 13:1453. [PMID: 37892141 PMCID: PMC10605153 DOI: 10.3390/biom13101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
With the increase in drug-resistant bacteria, new antibacterial drugs have emerged as a prominent area of research and development. Antimicrobial peptides (AMPs), as innate immune agents, have garnered significant attention due to their potent, rapid, and broad-spectrum antibacterial activity. This study focused on investigating the functionality of three AMPs (CATH 1, CATH 2, and MAP34-B) derived from goat submandibular glands. Among these AMPs, CATH 2 and MAP34-B exhibited direct antibacterial activity against both Gram-negative and Gram-positive bacteria, primarily targeting the bacterial membrane. Additionally, these two AMPs were found to have the potential to induce reactive oxygen species (ROS) production in bacterial cells and interact with bacterial genome DNA, which may play a crucial role in their mechanisms of action. Furthermore, both CATH 1 and CATH 2 demonstrated significant antioxidant activity, and all three AMPs exhibited potential anti-inflammatory activity. Importantly, the cytotoxic activity of these AMPs against mammalian cells was found to be weak, and their hemolytic activity was extremely low. Overall, the characteristics of these three AMPs found in goat submandibular glands offer new insights for the study of host protection from an immunological perspective. They hold promise as potential candidates for the development of novel antibacterial agents, particularly in the context of combating drug-resistant bacteria.
Collapse
Affiliation(s)
- Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Mengying Zhou
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China
| | - Qian Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Hui Jin
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Gaochi Xu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Ruiyin Guo
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China;
| | - Ren Lai
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Proutière A, du Merle L, Garcia-Lopez M, Léger C, Voegele A, Chenal A, Harrington A, Tal-Gan Y, Cokelaer T, Trieu-Cuot P, Dramsi S. Gallocin A, an Atypical Two-Peptide Bacteriocin with Intramolecular Disulfide Bonds Required for Activity. Microbiol Spectr 2023; 11:e0508522. [PMID: 36951576 PMCID: PMC10100652 DOI: 10.1128/spectrum.05085-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/16/2023] [Indexed: 03/24/2023] Open
Abstract
Streptococcus gallolyticus subsp. gallolyticus (SGG) is an opportunistic gut pathogen associated with colorectal cancer. We previously showed that colonization of the murine colon by SGG in tumoral conditions was strongly enhanced by the production of gallocin A, a two-peptide bacteriocin. Here, we aimed to characterize the mechanisms of its action and resistance. Using a genetic approach, we demonstrated that gallocin A is composed of two peptides, GllA1 and GllA2, which are inactive alone and act together to kill "target" bacteria. We showed that gallocin A can kill phylogenetically close relatives of the pathogen. Importantly, we demonstrated that gallocin A peptides can insert themselves into membranes and permeabilize lipid bilayer vesicles. Next, we showed that the third gene of the gallocin A operon, gip, is necessary and sufficient to confer immunity to gallocin A. Structural modeling of GllA1 and GllA2 mature peptides suggested that both peptides form alpha-helical hairpins stabilized by intramolecular disulfide bridges. The presence of a disulfide bond in GllA1 and GllA2 was confirmed experimentally. Addition of disulfide-reducing agents abrogated gallocin A activity. Likewise, deletion of a gene encoding a surface protein with a thioredoxin-like domain impaired the ability of gallocin A to kill Enterococcus faecalis. Structural modeling of GIP revealed a hairpin-like structure strongly resembling those of the GllA1 and GllA2 mature peptides, suggesting a mechanism of immunity by competition with GllA1/2. Finally, identification of other class IIb bacteriocins exhibiting a similar alpha-helical hairpin fold stabilized with an intramolecular disulfide bridge suggests the existence of a new subclass of class IIb bacteriocins. IMPORTANCE Streptococcus gallolyticus subsp. gallolyticus (SGG), previously named Streptococcus bovis biotype I, is an opportunistic pathogen responsible for invasive infections (septicemia, endocarditis) in elderly people and is often associated with colon tumors. SGG is one of the first bacteria to be associated with the occurrence of colorectal cancer in humans. Previously, we showed that tumor-associated conditions in the colon provide SGG with an ideal environment to proliferate at the expense of phylogenetically and metabolically closely related commensal bacteria such as enterococci (1). SGG takes advantage of CRC-associated conditions to outcompete and substitute commensal members of the gut microbiota using a specific bacteriocin named gallocin, recently renamed gallocin A following the discovery of gallocin D in a peculiar SGG isolate. Here, we showed that gallocin A is a two-peptide bacteriocin and that both GllA1 and GllA2 peptides are required for antimicrobial activity. Gallocin A was shown to permeabilize bacterial membranes and kill phylogenetically closely related bacteria such as most streptococci, lactococci, and enterococci, probably through membrane pore formation. GllA1 and GllA2 secreted peptides are unusually long (42 and 60 amino acids long) and have very few charged amino acids compared to well-known class IIb bacteriocins. In silico modeling revealed that both GllA1 and GllA2 exhibit a similar hairpin-like conformation stabilized by an intramolecular disulfide bond. We also showed that the GIP immunity peptide forms a hairpin-like structure similar to GllA1/GllA2. Thus, we hypothesize that GIP blocks the formation of the GllA1/GllA2 complex by interacting with GllA1 or GllA2. Gallocin A may constitute the first class IIb bacteriocin which displays disulfide bridges important for its structure and activity and might be the founding member of a subtype of class IIb bacteriocins.
Collapse
Affiliation(s)
- Alexis Proutière
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Biology of Gram-Positive Pathogens Unit, Paris, France
| | - Laurence du Merle
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Biology of Gram-Positive Pathogens Unit, Paris, France
| | - Marta Garcia-Lopez
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Biology of Gram-Positive Pathogens Unit, Paris, France
| | - Corentin Léger
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | - Alexis Voegele
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | - Alexandre Chenal
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | - Antony Harrington
- Department of Chemistry, University of Nevada, Reno, Reno Nevada, USA
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, Reno Nevada, USA
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Plateforme Technologique Biomics, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Biology of Gram-Positive Pathogens Unit, Paris, France
| | - Shaynoor Dramsi
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Biology of Gram-Positive Pathogens Unit, Paris, France
| |
Collapse
|
6
|
Nisin E Is a Novel Nisin Variant Produced by Multiple Streptococcus equinus Strains. Microorganisms 2023; 11:microorganisms11020427. [PMID: 36838392 PMCID: PMC9958725 DOI: 10.3390/microorganisms11020427] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Nisin A, the prototypical lantibiotic, is an antimicrobial peptide currently utilised as a food preservative, with potential for therapeutic applications. Here, we describe nisin E, a novel nisin variant produced by two Streptococcus equinus strains, APC4007 and APC4008, isolated from sheep milk. Shotgun whole genome sequencing and analysis revealed biosynthetic gene clusters similar to nisin U, with a unique rearrangement of the core peptide encoding gene within the cluster. The 3100.8 Da peptide by MALDI-TOF mass spectrometry, is 75% identical to nisin A, with 10 differences, including 2 deletions: Ser29 and Ile30, and 8 substitutions: Ile4Lys, Gly18Thr, Asn20Pro, Met21Ile, His27Gly, Val32Phe, Ser33Gly, and Lys34Asn. Nisin E producing strains inhibited species of Lactobacillus, Bacillus, and Clostridiodes and were immune to nisin U. Sequence alignment identified putative promoter sequences across the nisin producer genera, allowing for the prediction of genes in Streptococcus to be potentially regulated by nisin. S. equinus pangenome BLAST analyses detected 6 nisin E operons across 44 publicly available genomes. An additional 20 genomes contained a subset of nisin E transport/immunity and regulatory genes (nseFEGRK), without adjacent peptide production genes. These genes suggest that nisin E response mechanisms, distinct from the canonical nisin immunity and resistance operons, are widespread across the S. equinus species. The discovery of this new nisin variant and its immunity determinants in S. equinus suggests a central role for nisin in the competitive nature of the species.
Collapse
|
7
|
Whole-Genome Sequencing and Comparative Genomic Analysis of Antimicrobial Producing Streptococcus lutetiensis from the Rumen. Microorganisms 2022; 10:microorganisms10030551. [PMID: 35336126 PMCID: PMC8949432 DOI: 10.3390/microorganisms10030551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial peptides (AMPs) can efficiently control different microbial pathogens and show the potential to be applied in clinical practice and livestock production. In this work, the aim was to isolate AMP-producing ruminal streptococci and to characterize their genetic features through whole-genome sequencing. We cultured 463 bacterial isolates from the rumen of Nelore bulls, 81 of which were phenotypically classified as being Streptococcaceae. Five isolates with broad-range activity were genome sequenced and confirmed as being Streptococcus lutetiensis. The genetic features linked to their antimicrobial activity or adaptation to the rumen environment were characterized through comparative genomics. The genome of S. lutetiensis UFV80 harbored a putative CRISPR-Cas9 system (Type IIA). Computational tools were used to discover novel biosynthetic clusters linked to the production of bacteriocins. All bacterial genomes harbored genetic clusters related to the biosynthesis of class I and class II bacteriocins. SDS-PAGE confirmed the results obtained in silico and demonstrated that the class II bacteriocins predicted in the genomes of three S. lutetiensis strains had identical molecular mass (5197 Da). These results demonstrate that ruminal bacteria of the Streptococcus bovis/equinus complex represent a promising source of novel antimicrobial peptides.
Collapse
|
8
|
Rungsirivanich P, Parlindungan E, O'Connor PM, Field D, Mahony J, Thongwai N, van Sinderen D. Simultaneous Production of Multiple Antimicrobial Compounds by Bacillus velezensis ML122-2 Isolated From Assam Tea Leaf [ Camellia sinensis var. assamica (J.W.Mast.) Kitam.]. Front Microbiol 2021; 12:789362. [PMID: 34899671 PMCID: PMC8653701 DOI: 10.3389/fmicb.2021.789362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Bacillus velezensis ML122-2 is an antimicrobial-producing strain isolated from the leaf of Assam tea or Miang [Camellia sinensis var. assamica (J.W.Mast.) Kitam.]. The cell-free supernatant (CFS) of strain ML122-2 exhibits a broad-spectrum antimicrobial activity against various Gram-positive and Gram-negative bacteria as well as the mold Penicillium expansum. The genome of B. velezensis ML122-2 was sequenced and in silico analysis identified three potential bacteriocin-associated gene clusters, that is, those involved in the production of mersacidin, amylocyclicin, and LCI. Furthermore, six gene clusters exhibiting homology (75–100% DNA sequence identity) to those associated with the secondary metabolites bacilysin, bacillibactin, surfactin, macrolactin H, bacillaene, and plipastatin were identified. Individual antimicrobial activities produced by B. velezensis ML122-2 were purified and characterized by Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis, revealing three antimicrobial peptides with molecular masses corresponding to surfactin, plipastatin, and amylocyclicin. Transcriptional analysis of specific genes associated with mersacidin (mrsA), amylocyclicin (acnA), plipastatin (ppsA), and surfactin (srfAA) production by B. velezensis ML122-2 showed that the first was not transcribed under the conditions tested, while the latter three were consistent with the presence of the associated peptides as determined by mass spectrometry analysis. These findings demonstrate that B. velezensis ML122-2 has the genetic capacity to produce a wide range of antimicrobial activities that may support a specific community structure and highlight the biotechnological properties of Assam tea.
Collapse
Affiliation(s)
- Patthanasak Rungsirivanich
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Elvina Parlindungan
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paula M O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Des Field
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Narumol Thongwai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Rebuffat S. Ribosomally synthesized peptides, foreground players in microbial interactions: recent developments and unanswered questions. Nat Prod Rep 2021; 39:273-310. [PMID: 34755755 DOI: 10.1039/d1np00052g] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is currently well established that multicellular organisms live in tight association with complex communities of microorganisms including a large number of bacteria. These are immersed in complex interaction networks reflecting the relationships established between them and with host organisms; yet, little is known about the molecules and mechanisms involved in these mutual interactions. Ribosomally synthesized peptides, among which bacterial antimicrobial peptides called bacteriocins and microcins have been identified as contributing to host-microbe interplays, are either unmodified or post-translationally modified peptides. This review will unveil current knowledge on these ribosomal peptide-based natural products, their interplay with the host immune system, and their roles in microbial interactions and symbioses. It will include their major structural characteristics and post-translational modifications, the main rules of their maturation pathways, and the principal ecological functions they ensure (communication, signalization, competition), especially in symbiosis, taking select examples in various organisms. Finally, we address unanswered questions and provide a framework for deciphering big issues inspiring future directions in the field.
Collapse
Affiliation(s)
- Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), National Centre of Scientific Research (CNRS), CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
10
|
Characterization of a Four-Component Regulatory System Controlling Bacteriocin Production in Streptococcus gallolyticus. mBio 2021; 12:mBio.03187-20. [PMID: 33402539 PMCID: PMC8545106 DOI: 10.1128/mbio.03187-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacteriocins are natural antimicrobial peptides produced by bacteria to kill closely related competitors. The opportunistic pathogen Streptococcus gallolyticus subsp. gallolyticus was recently shown to outcompete commensal enterococci of the murine microbiota under tumoral conditions thanks to the production of a two-peptide bacteriocin named gallocin. Here, we identified four genes involved in the regulatory control of gallocin in S. gallolyticus subsp. gallolyticus UCN34 that encode a histidine kinase/response regulator two-component system (BlpH/BlpR), a secreted peptide (GSP [gallocin-stimulating peptide]), and a putative regulator of unknown function (BlpS). While BlpR is a typical 243-amino-acid (aa) response regulator possessing a phospho-receiver domain and a LytTR DNA-binding domain, BlpS is a 108-aa protein containing only a LytTR domain. Our results showed that the secreted peptide GSP activates the dedicated two-component system BlpH/BlpR to induce gallocin transcription. A genome-wide transcriptome analysis indicates that this regulatory system (GSP-BlpH/BlpR) is specific for bacteriocin production. Importantly, as opposed to BlpR, BlpS was shown to repress gallocin gene transcription. A conserved operator DNA sequence of 30 bp was found in all promoter regions regulated by BlpR and BlpS. Electrophoretic mobility shift assays (EMSA) and footprint assays showed direct and specific binding of BlpS and BlpR to various regulated promoter regions in a dose-dependent manner on this conserved sequence. Gallocin expression appears to be tightly controlled in S. gallolyticus subsp. gallolyticus by quorum sensing and antagonistic activity of 2 LytTR-containing proteins. Competition experiments in gut microbiota medium and 5% CO2 to mimic intestinal conditions demonstrate that gallocin is functional under these in vivo-like conditions.IMPORTANCE Streptococcus gallolyticus subsp. gallolyticus, formerly known as Streptococcus bovis biotype I, is an opportunistic pathogen causing septicemia and endocarditis in the elderly often associated with asymptomatic colonic neoplasia. Recent studies indicate that S. gallolyticus subsp. gallolyticus is both a driver and a passenger of colorectal cancer. We previously showed that S. gallolyticus subsp. gallolyticus produces a bacteriocin, termed gallocin, enabling colonization of the colon under tumoral conditions by outcompeting commensal members of the murine microbiota such as Enterococcus faecalis Here, we identified and extensively characterized a four-component system that regulates gallocin production. Gallocin gene transcription is activated by a secreted peptide pheromone (GSP) and a two-component signal transduction system composed of a transmembrane histidine kinase receptor (BlpH) and a cytosolic response regulator (BlpR). Finally, a DNA-binding protein (BlpS) was found to repress gallocin genes transcription, likely by antagonizing BlpR. Understanding gallocin regulation is crucial to prevent S. gallolyticus subsp. gallolyticus colon colonization under tumoral conditions.
Collapse
|