1
|
Carsten A, Failla AV, Aepfelbacher M. MINFLUX nanoscopy: Visualising biological matter at the nanoscale level. J Microsc 2024. [PMID: 38661499 DOI: 10.1111/jmi.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Since its introduction in 2017, MINFLUX nanoscopy has shown that it can visualise fluorescent molecules with an exceptional localisation precision of a few nanometres. In this overview, we provide a brief insight into technical implementations, fluorescent marker developments and biological studies that have been conducted in connection with MINFLUX imaging and tracking. We also formulate ideas on how MINFLUX nanoscopy and derived technologies could influence bioimaging in the future. This insight is intended as a general starting point for an audience looking for a brief overview of MINFLUX nanoscopy from theory to application.
Collapse
Affiliation(s)
- Alexander Carsten
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Fang L, Huang F. Measurement precision bounds on aberrated single molecule emission patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569462. [PMID: 38076960 PMCID: PMC10705439 DOI: 10.1101/2023.11.30.569462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Single-Molecule Localization Microscopy (SMLM) has revolutionized the study of biological phenomena by providing exquisite nanoscale spatial resolution. However, optical aberrations induced by sample and system imperfections distort the single molecule emission patterns (i.e. PSFs), leading to reduced precision and resolution of SMLM, particularly in three-dimensional (3D) applications. While various methods, both analytical and instrumental, have been employed to mitigate these aberrations, a comprehensive analysis of how different types of commonly encountered aberrations affect single molecule experiments and their image formation remains missing. In this study, we addressed this gap by conducting a quantitative study of the theoretical precision limit for position and wavefront distortion measurements in the presence of aberrations. Leveraging Fisher information and Cramér-Rao lower bound (CRLB), we quantitively analyzed and compared the effects of different aberration types, including index mismatch aberrations, on localization precision in both biplane and astigmatism 3D modalities as well as 2D SMLM imaging. Furthermore, we studied the achievable wavefront estimation precision from aberrated single molecule emission patterns, a pivot step for successful adaptive optics in SMLM through thick specimens. This analysis lays a quantitative foundation for the development and application of SMLM in whole-cells, tissues and with large field of view, providing in-depth insights into the behavior of different aberration types in single molecule imaging and thus generating theoretical guidelines for developing highly efficient aberration correction strategies and enhancing the precision and reliability of 3D SMLM.
Collapse
Affiliation(s)
- Li Fang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Remmel M, Scheiderer L, Butkevich AN, Bossi ML, Hell SW. Accelerated MINFLUX Nanoscopy, through Spontaneously Fast-Blinking Fluorophores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206026. [PMID: 36642798 DOI: 10.1002/smll.202206026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The introduction of MINFLUX nanoscopy allows single molecules to be localized with one nanometer precision in as little as one millisecond. However, current applications have so far focused on increasing this precision by optimizing photon collection, rather than minimizing the localization time. Concurrently, commonly used fluorescent switches are specifically designed for stochastic methods (e.g., STORM), optimized for a high photon yield and rather long on-times (tens of milliseconds). Here, accelerated MINFLUX nanoscopy with up to a 30-fold gain in localization speed is presented. The improvement is attained by designing spontaneously blinking fluorescent markers with remarkably fast on-times, down to 1-3 ms, matching the iterative localization process used in a MINFLUX microscope. This design utilizes a silicon rhodamine amide core, shifting the spirocyclization equilibrium toward an uncharged closed form at physiological conditions and imparting intact live cell permeability, modified with a fused (benzo)thiophene spirolactam fragment. The best candidate for MINFLUX microscopy (also suitable for STORM imaging) is selected through detailed characterization of the blinking behavior of single fluorophores, bound to different protein tags. Finally, optimization of the localization routines, customized to the fast blinking times, renders a significant speed improvement on a commercial MINFLUX microscope.
Collapse
Affiliation(s)
- Michael Remmel
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Lukas Scheiderer
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Alexey N Butkevich
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Mariano L Bossi
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
4
|
Portela M, Jimenez-Carretero D, Labrador V, Andreu MJ, Arza E, Caiolfa VR, Manzanares M. Chromatin dynamics through mouse preimplantation development revealed by single molecule localisation microscopy. Biol Open 2022; 11:275915. [PMID: 35876820 PMCID: PMC9346283 DOI: 10.1242/bio.059401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/30/2022] [Indexed: 01/07/2023] Open
Abstract
Most studies addressing chromatin behaviour during preimplantation development are based on biochemical assays that lack spatial and cell-specific information, crucial during early development. Here, we describe the changes in chromatin taking place at the transition from totipotency to lineage specification, by using direct stochastical optical reconstruction microscopy (dSTORM) in whole-mount embryos during the first stages of mouse development. Through the study of two post-translational modifications of Histone 3 related to active and repressed chromatin, H3K4me3 and H3K9me3 respectively, we obtained a time-course of chromatin states, showing spatial differences between cell types, related to their differentiation state. This analysis adds a new layer of information to previous biochemical studies and provides novel insight to current models of chromatin organisation during the first stages of development. SUMMARY: We have applied super-resolution microscopy to analyse changes in the state of chromatin during the first stages of mouse development, from the two-cell stage to the blastocyst.
Collapse
Affiliation(s)
- Marta Portela
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid 28049, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Daniel Jimenez-Carretero
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Veronica Labrador
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Maria Jose Andreu
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Elvira Arza
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Valeria R Caiolfa
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.,Center for Experimental Imaging, Ospedale San Raffaele, Milan 20132, Italy
| | - Miguel Manzanares
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid 28049, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| |
Collapse
|
5
|
Sharma S, Yang J, Grudzien-Nogalska E, Shivas J, Kwan KY, Kiledjian M. Xrn1 is a deNADding enzyme modulating mitochondrial NAD-capped RNA. Nat Commun 2022; 13:889. [PMID: 35173156 PMCID: PMC8850482 DOI: 10.1038/s41467-022-28555-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of non-canonical nicotinamide adenine diphosphate (NAD) 5′-end capped RNAs is now well established. Nevertheless, the biological function of this nucleotide metabolite cap remains elusive. Here, we show that the yeast Saccharomyces cerevisiae cytoplasmic 5′-end exoribonuclease Xrn1 is also a NAD cap decapping (deNADding) enzyme that releases intact NAD and subsequently degrades the RNA. The significance of Xrn1 deNADding is evident in a deNADding deficient Xrn1 mutant that predominantly still retains its 5′-monophosphate exonuclease activity. This mutant reveals Xrn1 deNADding is necessary for normal growth on non-fermenting sugar and is involved in modulating mitochondrial NAD-capped RNA levels and may influence intramitochondrial NAD levels. Our findings uncover a contribution of mitochondrial NAD-capped RNAs in overall NAD regulation with the deNADding activity of Xrn1 fulfilling a central role. The cytoplasmic Xrn1 protein has long been established as the predominate 5′ to 3′ exoribonuclease that cleaves RNAs with an unprotected 5′ monophosphate end. Here the authors demonstrate Xrn1 can also degrade RNAs harboring the noncanonical nicotinamide adenine diphosphate (NAD) 5′ cap by removing the NAD cap and degrading the RNA.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jun Yang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ewa Grudzien-Nogalska
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jessica Shivas
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kelvin Y Kwan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
6
|
Valli J, Garcia-Burgos A, Rooney LM, Vale de Melo E Oliveira B, Duncan RR, Rickman C. Seeing beyond the limit: A guide to choosing the right super-resolution microscopy technique. J Biol Chem 2021; 297:100791. [PMID: 34015334 PMCID: PMC8246591 DOI: 10.1016/j.jbc.2021.100791] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Super-resolution microscopy has become an increasingly popular and robust tool across the life sciences to study minute cellular structures and processes. However, with the increasing number of available super-resolution techniques has come an increased complexity and burden of choice in planning imaging experiments. Choosing the right super-resolution technique to answer a given biological question is vital for understanding and interpreting biological relevance. This is an often-neglected and complex task that should take into account well-defined criteria (e.g., sample type, structure size, imaging requirements). Trade-offs in different imaging capabilities are inevitable; thus, many researchers still find it challenging to select the most suitable technique that will best answer their biological question. This review aims to provide an overview and clarify the concepts underlying the most commonly available super-resolution techniques as well as guide researchers through all aspects that should be considered before opting for a given technique.
Collapse
Affiliation(s)
- Jessica Valli
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom.
| | - Adrian Garcia-Burgos
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Liam M Rooney
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Beatriz Vale de Melo E Oliveira
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Rory R Duncan
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Colin Rickman
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom.
| |
Collapse
|
7
|
Bohrer CH, Yang X, Thakur S, Weng X, Tenner B, McQuillen R, Ross B, Wooten M, Chen X, Zhang J, Roberts E, Lakadamyali M, Xiao J. A pairwise distance distribution correction (DDC) algorithm to eliminate blinking-caused artifacts in SMLM. Nat Methods 2021; 18:669-677. [PMID: 34059826 PMCID: PMC9040192 DOI: 10.1038/s41592-021-01154-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
Single-molecule localization microscopy (SMLM) relies on the blinking behavior of a fluorophore, which is the stochastic switching between fluorescent and dark states. Blinking creates multiple localizations belonging to the same fluorophore, confounding quantitative analyses and interpretations. Here we present a method, termed distance distribution correction (DDC), to eliminate blinking-caused repeat localizations without any additional calibrations. The approach relies on obtaining the true pairwise distance distribution of different fluorophores naturally from the imaging sequence by using distances between localizations separated by a time much longer than the average fluorescence survival time. We show that, using the true pairwise distribution, we can define and maximize the likelihood, obtaining a set of localizations void of blinking artifacts. DDC results in drastic improvements in obtaining the closest estimate of the true spatial organization and number of fluorescent emitters in a wide range of applications, enabling accurate reconstruction and quantification of SMLM images.
Collapse
Affiliation(s)
- Christopher H. Bohrer
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shreyasi Thakur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Tenner
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Ryan McQuillen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Ross
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Matthew Wooten
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Chen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Melike Lakadamyali
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Bohrer CH, Yang X, Thakur S, Weng X, Tenner B, McQuillen R, Ross B, Wooten M, Chen X, Zhang J, Roberts E, Lakadamyali M, Xiao J. A pairwise distance distribution correction (DDC) algorithm to eliminate blinking-caused artifacts in SMLM. Nat Methods 2021. [PMID: 34059826 DOI: 10.1101/768051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Single-molecule localization microscopy (SMLM) relies on the blinking behavior of a fluorophore, which is the stochastic switching between fluorescent and dark states. Blinking creates multiple localizations belonging to the same fluorophore, confounding quantitative analyses and interpretations. Here we present a method, termed distance distribution correction (DDC), to eliminate blinking-caused repeat localizations without any additional calibrations. The approach relies on obtaining the true pairwise distance distribution of different fluorophores naturally from the imaging sequence by using distances between localizations separated by a time much longer than the average fluorescence survival time. We show that, using the true pairwise distribution, we can define and maximize the likelihood, obtaining a set of localizations void of blinking artifacts. DDC results in drastic improvements in obtaining the closest estimate of the true spatial organization and number of fluorescent emitters in a wide range of applications, enabling accurate reconstruction and quantification of SMLM images.
Collapse
Affiliation(s)
- Christopher H Bohrer
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shreyasi Thakur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Tenner
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Ryan McQuillen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Ross
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Matthew Wooten
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Chen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|