1
|
Kaneko N, Kurata M, Yamamoto T, Sakamoto A, Takada Y, Kosako H, Takeda H, Sawasaki T, Masumoto J. CANE, a Component of the NLRP3 Inflammasome, Promotes Inflammasome Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:86-95. [PMID: 38787200 DOI: 10.4049/jimmunol.2300175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3, also called cryopyrin) inflammasome is an intracellular innate immune complex, which consists of the pattern-recognition receptor NLRP3, the adaptor apoptosis-assciated speck-like protein containing a caspase recruitment domain, and procaspase-1. Aberrant activation of the NLRP3 inflammasome causes an autoinflammatory disease called cryopyrin-associated periodic syndrome (CAPS). CAPS is caused by gain-of-function mutations in the NLRP3-encoding gene CIAS1; however, the mechanism of CAPS pathogenesis has not been fully understood. Thus, unknown regulators of the NLRP3 inflammasome, which are associated with CAPS development, are being investigated. To identify novel components of the NLRP3 inflammasome, we performed a high-throughput screen using a human protein array, with NLRP3 as the bait. We identified a NLRP3-binding protein, which we called the cryopyrin-associated nano enhancer (CANE). We demonstrated that CANE increased IL-1β secretion after NLRP3 inflammasome reconstitution in human embryonic kidney 293T cells and formed a "speck" in the cytosol, a hallmark of NLRP3 inflammasome activity. Reduced expression of endogenous CANE decreased IL-1β secretion upon stimulation with the NLRP3 agonist nigericin. To investigate the role of CANE in vivo, we developed CANE-transgenic mice. The PBMCs and bone marrow-derived macrophages of CANE-transgenic mice exhibited increased IL-1β secretion. Moreover, increased autoinflammatory neutrophil infiltration was observed in the s.c. tissue of CANE-transgenic versus wild-type mice; these phenotypes were consistent with those of CAPS model mice. These findings suggest that CANE, a component of the NLRP3 inflammasome, is a potential modulator of the inflammasome and a contributor to CAPS pathogenesis.
Collapse
Affiliation(s)
- Naoe Kaneko
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Mie Kurata
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Akimasa Sakamoto
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- Department of Hepatobiliary Pancreatic and Transplantation Surgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yasutsugu Takada
- Department of Hepatobiliary Pancreatic and Transplantation Surgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroyuki Takeda
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Junya Masumoto
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| |
Collapse
|
2
|
Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop Med Infect Dis 2024; 9:13. [PMID: 38251210 PMCID: PMC10818686 DOI: 10.3390/tropicalmed9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
Interleukins (ILs) are signaling molecules that are crucial in regulating immune responses during infectious diseases. Pro-inflammatory ILs contribute to the activation and recruitment of immune cells, whereas anti-inflammatory ILs help to suppress excessive inflammation and promote tissue repair. Here, we provide a comprehensive overview of the role of pro-inflammatory and anti-inflammatory ILs in infectious diseases, with a focus on the mechanisms underlying their effects, their diagnostic and therapeutic potential, and emerging trends in IL-based therapies.
Collapse
Affiliation(s)
- Arwa A. Al-Qahtani
- Department of Family Medicine, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Ahmed Ali Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
3
|
Yamamoto T, Kurata M, Kaneko N, Masumoto J. Intestinal edema induced by LPS-induced endotoxemia is associated with an inflammasome adaptor ASC. PLoS One 2023; 18:e0281746. [PMID: 36800329 PMCID: PMC9937502 DOI: 10.1371/journal.pone.0281746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
The apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)/caspase-1/interleukin(IL)-1β axis, also known as the inflammasome pathway, is indispensable for IL-1β activation in response to various pathogens or own damages. Previously, we developed an NLRP3-inflammasome using a cell-free system and identified ASC targeting drugs; thus, examination of ASC-related histopathology in various diseases could help to provide indications for these drugs. Here, we generated mice deficient only in ASC-protein (ASC-deficient (AD) mice) using CRISPR/Cas9 technology, studied which tissues were most affected, and obtained histopathological images of lipopolysaccharide (LPS)-induced endotoxemia. C57BL/6 wild-type (WT) and (AD) mice were injected intraperitoneally with a lethal dose (50 μg/g) of LPS. Statistical analysis of the survival of C57BL/6 mice and AD mice was performed using the Kaplan-Meier method and the log-rank test. The histopathological findings of multiple tissues from these mice were compared. Acute inflammation (e.g., catarrhal inflammation), along with congestion was observed in the colon of WT mice but not in that of AD mice. Adhesion of neutrophils to capillaries, along with interstitial infiltration, were observed in multiple tissues from WT mice. In AD mice, neutrophil infiltration was less severe but remained evident in the stomach, small intestine, heart, liver, kidney, spleen, and brain. Notably, there was no difference between WT and AD mice with respect to alveolar neutrophil infiltration and interstitial edema. These findings suggest that even though ASC contributes to systemic inflammation, it is dependent on the tissue involved. Intestinal congestion and edema might be good candidates for anti-ASC-targeted therapy.
Collapse
Affiliation(s)
- Toshihiro Yamamoto
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Mie Kurata
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Naoe Kaneko
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Junya Masumoto
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- * E-mail:
| |
Collapse
|
4
|
Kaneko N, Mori W, Kurata M, Yamamoto T, Zako T, Masumoto J. Inflammasome assembly is required for intracellular formation of β2-microglobulin amyloid fibrils, leading to IL-1β secretion. Int J Immunopathol Pharmacol 2022; 36:3946320221104554. [PMID: 35615856 PMCID: PMC9152197 DOI: 10.1177/03946320221104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Dialysis-related amyloidosis (DRA) caused by β2-microgloblin (B2M) fibrils is a serious complication for patients with kidney failure on long-term dialysis. Deposition of B2M amyloid fibrils is thought to be due not only to serum extracellular B2M but also to infiltrating inflammatory cells, which may have an important role in B2M amyloid deposition in osteoarticular tissues in patients with DRA. Here, we asked whether B2M amyloid fibrils activate the inflammasome and contribute to formation and deposition of amyloid fibrils in cells. METHODS Amyloid formation was confirmed by a thioflavin T (ThT) spectroscopic assay and scanning electron microscopy (SEM). Activation of inflammasomes was assessed by detecting interleukin (IL)-1β in culture supernatants from human embryonic kidney (HEK) 293T cells ectopically expressing inflammasome components. IL-1β secretion was measured by enzyme-linked immunosorbent assay. Expression and co-localization were analyzed by immunohistochemistry and dual immunofluorescence microscopy. RESULTS B2M amyloid fibrils interacted directly with NLRP3/Pyrin and to activate the NLRP3/Pyrin inflammasomes, resulting in IL-1β secretion. When HEK293T cells were transfected with inflammasome components NLRP3 or Pyrin, along with ASC, pro-caspase-1, pro-IL-1β, and B2M, ThT fluorescence intensity increased. This was accompanied by IL-1β secretion, which increased in line with the amount of transfected B2M. In this case, morphological glowing of amyloid fibrils was observed by SEM. In the absence of ASC, there was no increase in ThT fluorescence intensity or IL-1β secretion, or any morphological glowing of amyloid fibrils. NLRP3 or Pyrin and B2M were co-localized in a "speck" in HEK293T cells, and co-expressed in infiltrated monocytes/macrophages in the osteoarticular synovial tissues in a patient with DRA. CONCLUSION Taken together, these data suggest that inflammasome assembly is required for the subsequent triggering of intracellular formation of B2M amyloid fibrils, which may contribute to osteoarticular deposition of B2M amyloid fibrils and inflammation in patients with DRA.
Collapse
Affiliation(s)
- Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Japan
| | - Wakako Mori
- Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Matsuyama, Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Japan
| | - Tamotsu Zako
- Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Matsuyama, Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Japan
| |
Collapse
|
5
|
A chalcone derivative suppresses TSLP induction in mice and human keratinocytes through binding to BET family proteins. Biochem Pharmacol 2021; 194:114819. [PMID: 34757034 DOI: 10.1016/j.bcp.2021.114819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022]
Abstract
Although treatments for allergic diseases have improved, side effects and treatment resistance remain as challenges. New therapeutic drugs for allergic diseases are urgently required. Thymic stromal lymphopoietin (TSLP) is a cytokine target for prevention and treatment of allergic diseases. Since TSLP is produced from epithelial cells in allergic diseases, TSLP inhibitors may be new anti-allergic drugs. We previously identified a new inhibitor of TSLP production, named 16D10. However, its target of action remained unclarified. In this study, we found proteins binding to 16D10 from 24,000 human protein arrays by AlphaScreen-based high-throughput screening and identified bromodomain and extra-terminal (BET) family proteins as targets. We also clarified the detailed mode of interaction between 16D10 and a BET family protein using X-ray crystallography. Furthermore, we confirmed that inhibitors of BET family proteins suppressed TSLP induction and IL-33 and IL-36γ expression in both mouse and human keratinocyte cell lines. Taken together, our findings suggest that BET family proteins are involved in the suppression of TSLP production by 16D10. These proteins can contribute to the pathology of atopic dermatitis via TSLP regulation in keratinocytes and have potential as therapeutic targets in allergic diseases.
Collapse
|
6
|
Bai R, Lang Y, Shao J, Deng Y, Refuhati R, Cui L. The Role of NLRP3 Inflammasome in Cerebrovascular Diseases Pathology and Possible Therapeutic Targets. ASN Neuro 2021; 13:17590914211018100. [PMID: 34053242 PMCID: PMC8168029 DOI: 10.1177/17590914211018100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular diseases are pathological conditions involving impaired blood flow in the brain, primarily including ischaemic stroke, intracranial haemorrhage, and subarachnoid haemorrhage. The nucleotide-binding and oligomerisation (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a protein complex and a vital component of the immune system. Emerging evidence has indicated that the NLRP3 inflammasome plays an important role in cerebrovascular diseases. The function of the NLRP3 inflammasome in the pathogenesis of cerebrovascular diseases remains an interesting field of research. In this review, we first summarised the pathological mechanism of cerebrovascular diseases and the pathological mechanism of the NLRP3 inflammasome in aggravating atherosclerosis and cerebrovascular diseases. Second, we outlined signalling pathways through which the NLRP3 inflammasome participates in aggravating or mitigating cerebrovascular diseases. Reactive oxygen species (ROS)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ROS/thioredoxin-interacting protein (TXNIP) and purinergic receptor-7 (P2X7R) signalling pathways can activate the NLRP3 inflammasome; activation of the NLRP3 inflammasome can aggravate cerebrovascular diseases by mediating apoptosis and pyroptosis. Autophagy/mitochondrial autophagy, nuclear factor E2-related factor-2 (Nrf2), interferon (IFN)-β, sirtuin (SIRT), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) reportedly alleviate cerebrovascular diseases by inhibiting NLRP3 inflammasome activation. Finally, we explored specific inhibitors of the NLRP3 inflammasome based on the two-step activation of the NLRP3 inflammasome, which can be developed as new drugs to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Rongrong Bai
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Shao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Deng
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, China
| | - Reyisha Refuhati
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 2021; 18:1141-1160. [PMID: 33850310 PMCID: PMC8093260 DOI: 10.1038/s41423-021-00670-3] [Citation(s) in RCA: 405] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a multiprotein complex involved in the release of mature interleukin-1β and triggering of pyroptosis, which is of paramount importance in a variety of physiological and pathological conditions. Over the past decade, considerable advances have been made in elucidating the molecular mechanisms underlying the priming/licensing (Signal 1) and assembly (Signal 2) involved in NLRP3 inflammasome activation. Recently, a number of studies have indicated that the priming/licensing step is regulated by complicated mechanisms at both the transcriptional and posttranslational levels. In this review, we discuss the current understanding of the mechanistic details of NLRP3 inflammasome activation with a particular emphasis on protein-protein interactions, posttranslational modifications, and spatiotemporal regulation of the NLRP3 inflammasome machinery. We also present a detailed summary of multiple positive and/or negative regulatory pathways providing upstream signals that culminate in NLRP3 inflammasome complex assembly. A better understanding of the molecular mechanisms underlying NLRP3 inflammasome activation will provide opportunities for the development of methods for the prevention and treatment of NLRP3 inflammasome-related diseases.
Collapse
|