1
|
Feugang JM, Gad A, Menjivar NG, Ishak GM, Gebremedhn S, Gastal MO, Dlamini NH, Prochazka R, Gastal EL, Tesfaye D. Seasonal influence on miRNA expression dynamics of extracellular vesicles in equine follicular fluid. J Anim Sci Biotechnol 2024; 15:137. [PMID: 39380110 PMCID: PMC11462823 DOI: 10.1186/s40104-024-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Ovarian follicular fluid (FF) is a dynamic environment that changes with the seasons, affecting follicle development, ovulation, and oocyte quality. Cells in the follicles release tiny particles called extracellular vesicles (EVs) containing vital regulatory molecules, such as microRNAs (miRNAs). These miRNAs are pivotal in facilitating communication within the follicles through diverse signaling and information transfer forms. EV-coupled miRNA signaling is implicated to be associated with ovarian function, follicle and oocyte growth and response to various environmental insults. Herein, we investigated how seasonal variations directly influence the ovulatory and anovulatory states of ovarian follicles and how are they associated with follicular fluid EV-coupled miRNA dynamics in horses. RESULTS Ultrasonographic monitoring and follicular fluid aspiration of preovulatory follicles in horses during the anovulatory (spring: non-breeding) and ovulatory (spring, summer, and fall: breeding) seasons and subsequent EV isolation and miRNA profiling identified significant variation in EV-miRNA cargo content. We identified 97 miRNAs with differential expression among the groups and specific clusters of miRNAs involved in the spring transition (miR-149, -200b, -206, -221, -328, and -615) and peak breeding period (including miR-143, -192, -451, -302b, -100, and let-7c). Bioinformatic analyses showed enrichments in various biological functions, e.g., transcription factor activity, transcription and transcription regulation, nucleic acid binding, sequence-specific DNA binding, p53 signaling, and post-translational modifications. Cluster analyses revealed distinct sets of significantly up- and down-regulated miRNAs associated with spring anovulatory (Cluster 1) and summer ovulation-the peak breeding season (Clusters 4 and 6). CONCLUSIONS The findings from the current study shed light on the dynamics of FF-EV-coupled miRNAs in relation to equine ovulatory and anovulatory seasons, and their roles in understanding the mechanisms involved in seasonal shifts and ovulation during the breeding season warrant further investigation.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ghassan M Ishak
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, 10011, Iraq
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | | | - Melba O Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Notsile H Dlamini
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Radek Prochazka
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, 27721, Czech Republic
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
2
|
Santana PDPB, Pinheiro KDC, Pereira LCDS, Andrade SS, Aburjaile FF, Ramos PDCDA, de Souza EB, da Costa NN, Cordeiro MDS, Santos SDSD, Miranda MDS, Ramos RTJ, da Silva ALDC. RNA sequencing and gene co-expression network of in vitro matured oocytes and blastocysts of buffalo. Anim Reprod 2024; 21:e20230131. [PMID: 38912163 PMCID: PMC11192227 DOI: 10.1590/1984-3143-ar2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
In reproductive technologies, uncovering the molecular aspects of oocyte and embryo competence under different conditions is crucial for refining protocols and enhancing efficiency. RNA-seq generates high-throughput data and provides transcriptomes that can undergo additional computational analyses. This study presented the transcriptomic profiles of in vitro matured oocytes and blastocysts produced in vitro from buffalo crossbred (Bubalus bubalis), coupled with gene co-expression and module preservation analysis. Cumulus Oophorus Complexes, obtained from slaughterhouse-derived ovaries, were subjected to in vitro maturation to yield metaphase II oocytes (616) or followed in vitro fertilization and culture to yield blastocysts for sequencing (526). Oocyte maturation (72%, ±3.34 sd) and embryo development (21.3%, ±4.18 sd) rates were obtained from three in vitro embryo production routines following standard protocols. Sequencing of 410 metaphase II oocytes and 70 hatched blastocysts (grade 1 and 2) identified a total of 13,976 genes, with 62% being ubiquitously expressed (8,649). Among them, the differentially expressed genes (4,153) and the strongly variable genes with the higher expression (fold-change above 11) were highlighted in oocytes (BMP15, UCHL1, WEE1, NLRPs, KPNA7, ZP2, and ZP4) and blastocysts (APOA1, KRT18, ANXA2, S100A14, SLC34A2, PRSS8 and ANXA2) as representative indicators of molecular quality. Additionally, genes exclusively found in oocytes (224) and blastocysts (2,200) with specific biological functions were identified. Gene co-expression network and module preservation analysis revealed strong preservation of functional modules related to exosome components, steroid metabolism, cell proliferation, and morphogenesis. However, cell cycle and amino acid transport modules exhibited weak preservation, which may reflect differences in embryo development kinetics and the activation of cell signaling pathways between buffalo and bovine. This comprehensive transcriptomic profile serves as a valuable resource for assessing the molecular quality of buffalo oocytes and embryos in future in vitro embryo production assays.
Collapse
Affiliation(s)
| | | | | | - Soraya Silva Andrade
- Laboratório de Genômica e Bioinformática, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | | - Eduardo Baia de Souza
- Laboratório de Fertilização In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - Nathalia Nogueira da Costa
- Laboratório de Fertilização In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | | - Moysés dos Santos Miranda
- Laboratório de Fertilização In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | |
Collapse
|
3
|
Jaglan K, Dhaka SS, Magotra A, Patil CS, Ghanghas A. Exploring MicroRNA biogenesis, applications and bioinformatics analysis in livestock: A comprehensive review. Reprod Domest Anim 2024; 59:e14529. [PMID: 38268204 DOI: 10.1111/rda.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Small non-coding RNAs called microRNAs (miRNAs) control the expression of genes post-transcriptionally. Their correlation with commercial economic traits including milk, meat and egg production, as well as their effective role in animal productivity, fertility, embryo survival and disease resistance, make them significant in livestock research. The miRNAs exhibit distinct spatial and temporal expression patterns, offering insights into their functional roles within cells and tissues. Aberrant miRNA production can disrupt vital cellular processes and genetic networks, contributing to conditions like metabolic disorders and viral diseases. These short RNA molecules are present in extracellular fluids, displaying remarkable stability against RNA degradation enzymes and extreme environmental conditions. miRNAs preservation is facilitated through packaging in lipid vesicles or complex formation with RNA-binding proteins. Numerous studies have illuminated the roles of miRNAs in diverse physiological processes, including embryonic stem cell differentiation, haematopoietic stem cell proliferation and differentiation and the coordinated development of organ systems. The integration of miRNA profiling, next-generation sequencing and bioinformatics analysis paves the way for transformative advancements in livestock research and industry. The present review underscores the applications of miRNAs in livestock, showcasing their potential to improve breeding strategies, diagnose diseases and enhance our understanding of fundamental biological processes.
Collapse
Affiliation(s)
- Komal Jaglan
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - S S Dhaka
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - C S Patil
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Amandeep Ghanghas
- Department of Livestock Production Management, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
4
|
Maddahi A, Saberivand A, Hamali H, Jafarpour F, Saberivand M. Exploring the impact of heat stress on oocyte maturation and embryo development in dairy cattle using a culture medium supplemented with vitamins E, C, and coenzyme Q10. J Therm Biol 2024; 119:103759. [PMID: 38035528 DOI: 10.1016/j.jtherbio.2023.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
Heat stress is a significant factor affecting the fertility of dairy cattle due to the generation of free radicals. In assisted reproductive techniques, the inclusion of protective antioxidants becomes crucial to mitigate potential cellular damage. This study aimed to explore the impact of supplementing vitamins E, C, and coenzyme Q10 into the oocyte culture medium, with the goal of ameliorating the adverse effects of heat stress on oocyte maturation and embryo development in dairy cattle. A group of fifty Holstein dairy cows were synchronized, and their oocytes were harvested using the ovum pick-up method. High-quality oocytes were subjected to in vitro maturation (IVM) and in vitro fertilization (IVF) procedures, utilizing a culture medium containing, no supplements (Group 1), 100 μM of vitamins E (Group 2) and C (Group 3), along with 50 μM of coenzyme Q10 (Group 4). The ensuing zygotes were cultured, and the ensuing embryos were evaluated for blastocyst formation by the seventh day. An analysis of the blastocysts' inner cell mass (ICM) and trophectoderm (TE) cells was also conducted. The findings revealed that the group receiving supplementation of vitamin E and coenzyme Q10 exhibited significantly higher maturation and cleavage rates in comparison to both the control and the vitamin C groups. Furthermore, the count of ICM, TE, and blastocyst cells was notably elevated in the vitamin E supplemented group when compared to the control group. In summary, the effectiveness of vitamin E in enhancing IVM, IVF, and embryo development under conditions of heat stress surpassed that of vitamin C and coenzyme Q10.
Collapse
Affiliation(s)
- Aref Maddahi
- Theriogenology Section, Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Adel Saberivand
- Theriogenology Section, Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Hossein Hamali
- Theriogenology Section, Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Farnoosh Jafarpour
- Department of Embryology, Royan Biotechnology Research Institute, Isfahan, Iran.
| | - Maryam Saberivand
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
5
|
Yao B, Tan Y, An K, Kang Y, Hou Q, Zhang D, Su J. Seasonal patterns of miRNA and mRNA expression profiles in the testes of plateau zokors (Eospalax baileyi). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101143. [PMID: 37696166 DOI: 10.1016/j.cbd.2023.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The gonads of seasonal breeding animals undergo periodic annual changes in morphology, physiological hormones, and gene expression levels. To clarify the regulatory mechanism of miRNAs in the seasonal testicular development and spermatogenesis of plateau zokors, the miRNA expression profiles in their testicles during breeding and non-breeding seasons were analyzed. In total, 447 miRNAs, including 366, 81, and 167 known, novel, and differentially expressed (DE) miRNAs, respectively, were determined in the testes. Compared to the non-breeding season, 90 DE miRNAs were upregulated and 77 DE miRNAs were downregulated during the breeding season. By analysing the miRNA and mRNA expression profiles, we predicted 2096 significant target mRNAs. According to the miRNA-mRNA interaction network, target mRNAs with DE miRNAs were related to testicular development and spermatogenesis. GO indicated that target mRNAs were enriched in spermatogenesis, cell differentiation, multicellular biological development, and flagellated sperm movement and were associated with regulating testicular development and spermatogenesis. KEGG suggested that target mRNAs were enriched in lipid and fructose metabolism and provided energy and material for spermatogenesis. The target mRNA of rno-miR-24-3p was determined to be Polyubiquitin-B (UBB). Our results provide a reference for revealing the mechanism by which miRNAs regulate testicular development and spermatogenesis in plateau zokors, which has important implications for understanding the regulation of seasonal reproduction in animals.
Collapse
Affiliation(s)
- Baohui Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Kang An
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yukun Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiqi Hou
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Degang Zhang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
6
|
Wang S, Xu J, Zhao X, Feng Y, Xu W, Xue H, Wu M, Xu L. Small RNA-seq and hormones in the testes of dwarf hamsters ( Cricetulus barabensis) reveal the potential pathways in photoperiod regulated reproduction. Heliyon 2023; 9:e15687. [PMID: 37144180 PMCID: PMC10151367 DOI: 10.1016/j.heliyon.2023.e15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 03/26/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Photoperiod regulates the functions and development of gonadal organs of seasonally breeding animals, resulting in breeding peaks in specific seasons. miRNA plays an important role in the regulation of testicular physiological functions. However, the relationship between photoperiods and miRNA levels in testes has yet to be conclusively determined. We investigated testicular miRNA of striped dwarf hamster (Cricetulus barabensis) responses to different photoperiods (long daylength [LD], moderate daylength [MD], and short daylength [SD]) and the potential pathways involved in photoperiod regulated reproduction. Testicular weights and reproductive hormone levels were measured in each of photoperiod treatments after 30 days. The concentrations of testosterone (T) and dihydrogen testosterone (DHT) in testes and Gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in serum were higher in MD than in the other two groups. Testicular weights were heaviest in MD. Small RNA-seq was performed for the testes of hamsters in three groups. A total of 769 miRNAs were identified, of which 83 were differentially expressed between LD, MD, and SD. GO and KEGG analysis of target genes revealed that some miRNAs influence testicular activities by regulating the pathways related to cell apoptosis and metabolism. Gene expression pattern analysis showed that the MAPK signaling pathway may be the core pathway for photoperiodic regulation of reproduction. These results suggest that moderate daylength is more suitable for hamster reproduction while long daylength and short daylength may regulate reproduction through different molecular pathways.
Collapse
|
7
|
Kosior MA, Esposito R, Cocchia N, Piscopo F, Longobardi V, Cacciola NA, Presicce GA, Campanile G, Aardema H, Gasparrini B. Seasonal variations in the metabolomic profile of the ovarian follicle components in Italian Mediterranean Buffaloes. Theriogenology 2023; 202:42-50. [PMID: 36898285 DOI: 10.1016/j.theriogenology.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/05/2023]
Abstract
The aim of this work was to evaluate the seasonal effect on the metabolomic profile of the ovarian follicle in Italian Mediterranean buffalo to unravel the causes of the reduced competence during the non-breeding season (NBS). Samples of follicular fluid, follicular cells, cumulus cells and oocytes were collected from abattoir-derived ovaries during breeding season (BS) and NBS and analyzed by 1H Nuclear Magnetic Resonance. The Orthogonal Projections to Latent Structures of the Discriminant Analysis showed clear separation into seasonal classes and Variable Importance in Projection method identified differentially abundant metabolites between seasons. Seasonal differences were recorded in metabolite content in all analyzed components suggesting that the decreased oocyte competence during NBS may be linked to alteration of several metabolic pathways. The pathway enrichment analysis revealed that differences in the metabolites between the seasons were linked to glutathione, energy generating and amino acid metabolism and phospholipid biosynthesis. The current work allows the identification of potential positive competence markers in the follicular fluid as glutathione, glutamate, lactate and choline, and negative markers like leucine, isoleucine and β-hydroxybutyrate. These results form a major basis to develop potential strategies to optimize the follicular environment and the IVM medium to improve the competence of oocytes during the NBS.
Collapse
Affiliation(s)
- Michal Andrzej Kosior
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | - Riccardo Esposito
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | - Natascia Cocchia
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy.
| | - Federica Piscopo
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | - Valentina Longobardi
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | - Nunzio Antonio Cacciola
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | | | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| | - Hilde Aardema
- Department of Farm Animal Health, Faculty of Veterinary Medicine - Utrecht University, Yalelaan 7, 3584 CL, Utrecht, the Netherlands
| | - Bianca Gasparrini
- Department of Veterinary Medicine and Animal Production - Federico II University, Via F. Delpino 1, 80137, Naples, Italy
| |
Collapse
|
8
|
Capra E, Kosior MA, Cocchia N, Lazzari B, Del Prete C, Longobardi V, Pizzi F, Stella A, Frigerio R, Cretich M, Consiglio AL, Gasparrini B. Variations of follicular fluid extracellular vesicles miRNAs content in relation to development stage and season in buffalo. Sci Rep 2022; 12:14886. [PMID: 36050481 PMCID: PMC9437019 DOI: 10.1038/s41598-022-18438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
In buffalo (Bubalus bubalis) reproductive seasonality, causing cycles of milk production, is one of the major factors affecting farming profitability. Follicular fluid (FF) contains extracellular vesicles (EVs) playing an important role in modulating oocyte developmental competence and carrying microRNAs (miRNAs) essential for in vitro fertilization outcomes. The aim of this work was to characterize the FF-EVs-miRNA cargo of antral (An) and preovulatory (pO) follicles collected in the breeding (BS) and non-breeding (NBS) seasons, to unravel the molecular causes of the reduced oocyte competence recorded in buffalo during the NBS. In total, 1335 miRNAs (538 known Bos taurus miRNAs, 324 homologous to known miRNAs from other species and 473 new candidate miRNAs) were found. We identified 413 differentially expressed miRNAs (DE-miRNAs) (FDR < 0.05) between An and pO groups. A subset of the most significant DE-miRNAs between An and pO groups targets genes which function is related to the lipid and steroid metabolism, response to glucocorticoid and oestradiol stimulus. Comparison between BS and NBS showed 14 and 12 DE-miRNAs in An-FF-EVs and pO-FF-EVs, which regulate IL6 release and cellular adhesion, respectively. In conclusion, these results demonstrated that the miRNA cargo of buffalo FF-EVs varies in relation to both follicular development and season.
Collapse
Affiliation(s)
- Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Michal Andrzej Kosior
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Natascia Cocchia
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Chiara Del Prete
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Valentina Longobardi
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Flavia Pizzi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Alessandra Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche SCITEC-CNR, Milano, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche SCITEC-CNR, Milano, Italy
| | - Anna Lange Consiglio
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Via Celoria, 10, 20133, Lodi, Milano, Italy.
| | - Bianca Gasparrini
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| |
Collapse
|
9
|
Seasonal Variations in the Lipid Profile of the Ovarian Follicle in Italian Mediterranean Buffaloes. Animals (Basel) 2022; 12:ani12162108. [PMID: 36009698 PMCID: PMC9405139 DOI: 10.3390/ani12162108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Reproductive seasonality is a major factor affecting buffalo breeding. The rationale of this work derives from the hypothesis that the reduced cleavage and blastocyst rates observed during the non-breeding season could be due to a suboptimal follicular environment. The present study aimed to evaluate the influence of season on the lipid profile of the ovarian follicle in the Italian Mediterranean buffalo. For this purpose, abattoir-derived ovaries were collected during the breeding and non-breeding seasons, and the apolar phase of follicular components was analyzed. To our knowledge, this is the first report of seasonal variations in lipid content of the buffalo ovarian follicle, including follicular fluid, follicular and cumulus cells, and oocytes. The results undoubtedly demonstrated significant seasonal variations in the lipid profile, including triglycerides, cholesterol, and phospholipids, in the different biological matrices analyzed. Interestingly, an increased amount in the total level of non-esterified fatty acids in the follicular fluid was also observed during the non-breeding season. The results allow a better understanding of the physiology of the ovarian follicle in buffalo and unveil some causes of reduced oocyte competence during the non-reproductive season, laying the groundwork for further studies and corrective strategies. Abstract The reduced oocyte competence recorded during the non-breading season (NBS) is one of the key factors affecting the profitability of buffalo farming and limits the IVEP efficiency. The purpose of this experiment was to evaluate whether season influences the lipid content within the ovarian follicle in the Italian Mediterranean buffalo. Abattoir-derived ovaries were collected during the breeding season (BS) and the NBS, and different matrices (follicular fluid, oocytes, cumulus and follicular cells) were recovered. After the extraction of the apolar fraction, all samples were analyzed by H1 nuclear magnetic resonance and FF samples by gas chromatography–mass spectrometry. Seasonal differences in lipid composition were observed in all matrices. In particular, during the NBS, the triglyceride content was higher in the follicular fluid and in the oocytes but reduced in the follicular cells. Both cholesterol and phospholipids were reduced in the follicular fluid and follicular cells during the NBS. Furthermore, the total amount of non-esterified fatty acids was significantly increased in the follicular fluid. The seasonal variation in lipid profile of the follicle may, in part, account for the reduced buffalo oocyte competence during the NBS, due to the critical role played by lipids in regulating ovarian functions.
Collapse
|
10
|
Beltran-Frutos E, Casarini L, Santi D, Brigante G. Seasonal reproduction and gonadal function: A focus on humans starting from animal studies. Biol Reprod 2021; 106:47-57. [PMID: 34718419 DOI: 10.1093/biolre/ioab199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photoperiod impacts reproduction in many species of mammals. Mating occurs at specific seasons to achieve reproductive advantages, such as optimization of offspring survival. Light is the main regulator of these changes during the photoperiod. Seasonally breeding mammals detect and transduce light signals through extraocular photoreceptor, regulating downstream melatonin-dependent peripheral circadian events. In rodents, hormonal reduction and gonadal atrophy occur quickly, and consensually with short-day periods. It remains unclear whether photoperiod influences human reproduction. Seasonal fluctuations of sex hormones have been described in humans, although they seem to not imply adaptative seasonal pattern in human gonads. This review discusses current knowledge about seasonal changes in the gonadal function of vertebrates, including humans. The photoperiod-dependent regulation of hypothalamic-pituitary-gonadal axis, as well as morphological and functional changes of the gonads are evaluated herein. Endocrine and morphological variations of reproductive functions, in response to photoperiod, are of interest as they may reflect the nature of past population selection for adaptative mechanisms that occurred during evolution.
Collapse
Affiliation(s)
- Ester Beltran-Frutos
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca. School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia. Spain
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| |
Collapse
|
11
|
da Silva JCB, Alves MBR, Bridi A, Bohrer RC, Escobar GSL, de Carvalho JABA, Binotti WAB, Pugliesi G, Lemes KM, Chello D, Perecin F. Reproductive seasonality influences oocyte retrieval and embryonic competence but not uterine receptivity in buffaloes. Theriogenology 2021; 170:77-84. [PMID: 34000520 DOI: 10.1016/j.theriogenology.2021.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
Since buffaloes are a seasonal, polyestrous species, optimizing reproduction during the non-breeding season is a key factor in increasing the reproductive and productive efficiency of herds. Ovum pick-up associated with in vitro embryo production and embryo cryopreservation is an alternative to reduce seasonal impacts. We studied the effects of seasonality in buffalo oocyte donors and embryo recipients during the favorable and non-favorable breeding seasons. Donors were evaluated for oocyte recovery and blastocyst production rate as dFBS (donors in favorable breeding season) or dNBS (donors in non-favorable breeding season). Embryos produced from dFBS or dNBS were cryopreserved by vitrification or the slow-freeze method for direct transfer and transferred to recipients in the favorable (rFBS) or non-favorable breeding season (rNBS). The heifers or cows were subjected to a fixed-time embryo transfer protocol and conception rates were determined on day 30 and on day 60. The oocyte recovery was lower in dFBS than in dNBS (7.6 vs. 10.0 oocyte/OPU, p = 0.0262); while no difference was found comparing blastocyst production rate (23.7% vs. 30.9% of blastocysts, respectively). Embryos from dFBS resulted in greater (p = 0.0013) conception rates on day 30 compared to dNBS (46.5% vs. 22.4%, respectively), despite the breeding season. The rFBS and rNBS treatments had similar (p = 0.6714) conception rates on day 30 (38.0% vs. 33.0%, respectively), indicating similar uterine receptivity. However, heifers on FBS had higher (p = 0.0003) conception rates on day 30 than cows (73.9% vs. 13.3%, respectively) when receiving embryos from dFBS. Vitrification and direct transfer had similar (p = 0.1698) conception rates on day 30 (30.4% vs. 41.4%, respectively). In conclusion, in vitro-produced embryos derived from dFBS were more competent in establishing pregnancy than dNBS counterparts, independent of recipients' reproductive seasonality. Heifers achieved better conception rates than cows during the favorable breeding season when the embryo came from dFBS. Cryopreserved in vitro produced embryos represent a reliable alternative to reduce seasonal variations in buffalo reproduction. The data elucidate the seasonal effects on embryo competence and on recipients' uterine receptivity, affording new strategies to implement ovum pick-up associated with in vitro embryo production programs in buffalo herds.
Collapse
Affiliation(s)
- Júlio César Barboza da Silva
- FZEA/USP - Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Maíra Bianchi Rodrigues Alves
- FZEA/USP - Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Alessandra Bridi
- FZEA/USP - Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Guilherme Pugliesi
- FMVZ/USP - Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil São Paulo, Brazil
| | | | - Damiana Chello
- FMVZ/USP - Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil São Paulo, Brazil
| | - Felipe Perecin
- FZEA/USP - Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|