1
|
Genna VG, Maurizi E, Rama P, Pellegrini G. Biology and medicine on ocular surface restoration: Advancements and limits of limbal stem cell deficiency treatments. Ocul Surf 2024; 35:57-67. [PMID: 39580144 DOI: 10.1016/j.jtos.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Ocular vision can be hampered by corneal damages, sensibly reducing patients' quality of life and having important social and economic consequences. Ocular surface diseases, which often lead to corneal opacities with visual impairment are the most severe forms of the Limbal Stem Cell Deficiency (LSCD). The present review provides an updated perspective on the available treatments for LSCD, focusing on clinical and biological features, as well as critical points to monitor during clinical translation. Recently developed surgical treatments for LSCD are described, along with their benefits and limitations, with the aim of addressing the issue of correct patient selection. Autologous surgical approaches have been attempted, such as conjunctival limbal autograft (CLAU), simple limbal epithelial transplantation (SLET), and others. Allogeneic limbal stem cell transplantation represents an alternative but carries risk of rejection and requires immunosuppression. Other potential treatments are based on induced pluripotent stem cells (iPSCs), but they require further investigation. The development of advanced therapy medicinal products (ATMPs) such as cultivated limbal epithelial transplantation (CLET), or the use of other epithelia as cultivated oral mucosal epithelial cell transplantation (COMET), has opened additional therapeutic possibilities. Some common critical issues in clinical translation are described, such as patient selection, biopsy procurement, or the use of human/animal derived components, which require rigorous validation to ensure safety and efficacy. Personalized medicine is a promising field for ocular surface restoration, where long-term follow-up studies and standardized criteria are crucial to evaluate the efficacy of these treatments and their cost-effectiveness in providing high-value healthcare.
Collapse
Affiliation(s)
| | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Rama
- Department of Ophthalmology, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
2
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Lu Z, Lin H, Li J, Feng Y. Deciphering the molecular symphony: Unraveling endothelial-to-mesenchymal transition in corneal endothelial cells. Exp Eye Res 2024; 240:109795. [PMID: 38253308 DOI: 10.1016/j.exer.2024.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Understanding the molecular complexity of this phenomenon provides innovative targets for maintaining phenotypic integrity during in vitro expansion, thereby advancing corneal endothelial tissue engineering. In this study, we established an in vitro model to simulate endothelial-to-mesenchymal transition (EndMT) in corneal endothelial cells. Through RNA sequencing, we identified 452 upregulated and 163 downregulated genes, resulting in a total of 615 differentially expressed genes. Key pathways enriched by GO and KEGG analysis include extracellular matrix (ECM) regulation and the PI3K-Akt signaling pathway. Potential hub proteins such as THBS1, ITGA5, COL1A1, and SNAI1/2 were also identified, and their dynamic changes at different time points (0, 2, 12, 24 h) were monitored. Uncovering these key pathways and genes may deepen our understanding of the mechanisms underlying EndMT in corneal endothelial cells, providing valuable insights for optimizing in vitro cultivation strategies.
Collapse
Affiliation(s)
- Zhaoxiang Lu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China; Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Haimiao Lin
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jinming Li
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yun Feng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China; Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
4
|
Merra A, Maurizi E, Pellegrini G. Impact of culture media on primary human corneal endothelial cells derived from old donors. Exp Eye Res 2024; 240:109815. [PMID: 38316204 DOI: 10.1016/j.exer.2024.109815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Corneal endothelial dysfunction is a major indication for corneal transplantation. However, a global shortage of donor corneal tissues and risks associated with corneal surgeries have prompted exploration of alternative options, including tissue-engineered grafts or cell injection therapy. Nonetheless, these approaches require a controlled culture of primary human corneal endothelial cells (HCEnCs). Although HCEnCs established from young donors are generally more proliferative and maintain a better phenotype, corneas from old donors are more frequently accessible from eye banks due to a lower corneal endothelial cell count than the necessary threshold required for transplantation. In this study, we investigated various culture media to evaluate which one is the most appropriate for stimulating the proliferation while maintaining cell morphology and function of HCEnCs derived from old donors (age >65 years). All experiments were performed on paired research-grade donor corneas, divided for the conditions under investigation in order to minimize the inter-donor variability. Cell morphology as well as expression of specific markers were assessed at both mRNA (CD166, SLC4A11, ATP1A1, COL8A1, α-SMA, CD44, COL1A1, CDKN2A, LAP2A and LAP2B) and protein (ZO-1, α-SMA, Ki67 and LAP2) levels. Results obtained showed how the Dual Media formulation maintained the hexagonal phenotype more efficiently than Single Medium, but cell size gradually increased with passages. In contrast, the Single Medium provided a higher proliferation rate and a prolonged in vitro expansion but acquired an elongated morphology. To summarize, Single medium and Dual media preserve morphology and functional phenotype of HCEnCs from old donor corneas at low passages while maintenance of the same cell features at high passages remains an active area of research. The new insights revealed within this work become particularly relevant considering that the elderly population a) is the main target of corneal endothelial therapy, b) represents the majority of corneal donors. Therefore, the proper expansion of HCEnCs from old donors is essential to develop novel personalised therapeutic strategies and reduce requirement of human corneal tissues globally.
Collapse
Affiliation(s)
- Alessia Merra
- Holostem Terapie Avanzate S.r.l., Modena, Italy; Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Maurizi
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | - Graziella Pellegrini
- Holostem Terapie Avanzate S.r.l., Modena, Italy; Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Polito MP, Marini G, Palamenghi M, Enzo E. Decoding the Human Epidermal Complexity at Single-Cell Resolution. Int J Mol Sci 2023; 24:ijms24108544. [PMID: 37239891 DOI: 10.3390/ijms24108544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The epidermis is one of the largest tissues in the human body, serving as a protective barrier. The basal layer of the epidermis, which consists of epithelial stem cells and transient amplifying progenitors, represents its proliferative compartment. As keratinocytes migrate from the basal layer to the skin surface, they exit the cell cycle and initiate terminal differentiation, ultimately generating the suprabasal epidermal layers. A deeper understanding of the molecular mechanisms and pathways driving keratinocytes' organization and regeneration is essential for successful therapeutic approaches. Single-cell techniques are valuable tools for studying molecular heterogeneity. The high-resolution characterization obtained with these technologies has identified disease-specific drivers and new therapeutic targets, further promoting the advancement of personalized therapies. This review summarizes the latest findings on the transcriptomic and epigenetic profiling of human epidermal cells, analyzed from human biopsy or after in vitro cultivation, focusing on physiological, wound healing, and inflammatory skin conditions.
Collapse
Affiliation(s)
- Maria Pia Polito
- Centre for Regenerative Medicine ''Stefano Ferrari'', University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Grazia Marini
- Centre for Regenerative Medicine ''Stefano Ferrari'', University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele Palamenghi
- Centre for Regenerative Medicine ''Stefano Ferrari'', University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine ''Stefano Ferrari'', University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
6
|
Seo JS, Tumursukh NE, Choi JH, Song Y, Jeon G, Kim NE, Kim SJ, Kim N, Song JE, Khang G. Modified gellan gum-based hydrogel with enhanced mechanical properties for application as a cell carrier for cornea endothelial cells. Int J Biol Macromol 2023; 236:123878. [PMID: 36894057 DOI: 10.1016/j.ijbiomac.2023.123878] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Recently, the number of people suffering from visual loss due to eye diseases is increasing rapidly around the world. However, due to the severe donor shortage and the immune response, corneal replacement is needed. Gellan gum (GG) is biocompatible and widely used for cell delivery or drug delivery, but its strength is not suitable for the corneal substitute. In this study, a GM hydrogel was prepared by blending methacrylated gellan gum with GG (GM) to give suitable mechanical properties to the corneal tissue. In addition, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), a crosslinking initiator, was added to the GM hydrogel. After the photo-crosslinking treatment, it was named GM/LAP hydrogel. GM and GM/LAP hydrogels were analyzed for physicochemical properties, mechanical characterization, and transparency tests to confirm their applicability as carriers for corneal endothelial cells (CEnCs). Also, in vitro studies were performed with cell viability tests, cell proliferation tests, cell morphology, cell-matrix remodeling analysis, and gene expression evaluation. The compressive strength of the GM/LAP hydrogel was improved compared to the GM hydrogel. The GM/LAP hydrogel showed excellent cell viability, proliferation, and cornea-specific gene expression than the GM hydrogel. Crosslinking-improved GM/LAP hydrogel can be applied as a promising cell carrier in corneal tissue engineering.
Collapse
Affiliation(s)
- Jin Sol Seo
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Nomin-Erdene Tumursukh
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Youngeun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Gayeong Jeon
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Na Eun Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Seung Jae Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Nahyeon Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea; Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea; Department of Orthopaedic & Traumatology, Airlangga University, Jl. Airlangga No.4 - 6, Airlangga, Kec. Gubeng, Kota SBY, Jawa Timur 60115, Indonesia.
| |
Collapse
|
7
|
GSK-3 inhibition reverts mesenchymal transition in primary human corneal endothelial cells. Eur J Cell Biol 2023; 102:151302. [PMID: 36905755 DOI: 10.1016/j.ejcb.2023.151302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Human corneal endothelial cells are organized in a tight mosaic of hexagonal cells and serve a critical function in maintaining corneal hydration and clear vision. Regeneration of the corneal endothelial tissue is hampered by its poor proliferative capacity, which is partially retrieved in vitro, albeit only for a limited number of passages before the cells undergo mesenchymal transition (EnMT). Although different culture conditions have been proposed in order to delay this process and prolong the number of cell passages, EnMT has still not been fully understood and successfully counteracted. In this perspective, we identified herein a single GSK-3 inhibitor, CHIR99021, able to revert and avoid EnMT in primary human corneal endothelial cells (HCEnCs) from old donors until late passages in vitro (P8), as shown from cell morphology analysis (circularity). In accordance, CHIR99021 reduced expression of α-SMA, an EnMT marker, while restored endothelial markers such as ZO-1, Na+/K+ ATPase and N-cadherin, without increasing cell proliferation. A further analysis on RNA expression confirmed that CHIR99021 induced downregulation of EnMT markers (α-SMA and CD44), upregulation of the proliferation repressor p21 and revealed novel insights into the β-catenin and TGFβ pathways intersections in HCEnCs. The use of CHIR99021 sheds light on the mechanisms involved in EnMT, providing a substantial advantage in maintaining primary HCEnCs in culture until late passages, while preserving the correct morphology and phenotype. Altogether, these results bring crucial advancements towards the improvement of the corneal endothelial cells based therapy.
Collapse
|
8
|
Maurizi E, Martella DA, Schiroli D, Merra A, Mustfa SA, Pellegrini G, Macaluso C, Chiappini C. Nanoneedles Induce Targeted siRNA Silencing of p16 in the Human Corneal Endothelium. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203257. [PMID: 36253148 PMCID: PMC9685449 DOI: 10.1002/advs.202203257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Nanoneedles can target nucleic acid transfection to primary cells at tissue interfaces with high efficiency and minimal perturbation. The corneal endothelium is an ideal target for nanoneedle-mediated RNA interference therapy aimed at enhancing its proliferative capacity, necessary for tissue regeneration. This work develops a strategy for siRNA nanoninjection to the human corneal endothelium. Nanoneedles can deliver p16-targeting siRNA to primary human corneal endothelial cells in vitro without toxicity. The nanoinjection of siRNA induces p16 silencing and increases cell proliferation, as monitored by ki67 expression. Furthermore, siRNA nanoinjection targeting the human corneal endothelium is nontoxic ex vivo, and silences p16 in transfected cells. These data indicate that nanoinjection can support targeted RNA interference therapy for the treatment of endothelial corneal dysfunction.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Dentistry Centre LabUniversity of Parmavia Gramsci 14Parma43126Italy
- Centre for Regenerative Medicine ‘‘S. Ferrari’’University of Modena and Reggio EmiliaModena41125Italy
| | | | - Davide Schiroli
- Transfusion Medicine UnitAzienda USL‐IRCCSReggio Emilia42122Italy
| | | | - Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- AstraZenecaGranta Park, Great AbingtonCambridgeCB21 6GHUnited Kingdom
| | - Graziella Pellegrini
- Centre for Regenerative Medicine ‘‘S. Ferrari’’University of Modena and Reggio EmiliaModena41125Italy
- Holostem Terapie Avanzate S.r.l.Modena41125Italy
| | - Claudio Macaluso
- Dentistry Centre LabUniversity of Parmavia Gramsci 14Parma43126Italy
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- London Centre for NanotechnologyKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Endothelial keratoplasty is the current gold standard for treating corneal endothelial diseases, achieving excellent visual outcomes and rapid rehabilitation. There are, however, severe limitations to donor tissue supply and uneven access to surgical teams and facilities across the globe. Cell therapy is an exciting approach that has shown promising early results. Herein, we review the latest developments in cell therapy for corneal endothelial disease. RECENT FINDINGS We highlight the work of several groups that have reported successful functional outcomes of cell therapy in animal models, with the utilization of human embryonic stem cells, human-induced pluripotent stem cells and cadaveric human corneal endothelial cells (CECs) to generate populations of CECs for intracameral injection. The use of corneal endothelial progenitors, viability of cryopreserved cells and efficacy of simple noncultured cells, in treating corneal decompensation is of particular interest. Further additions to the collective understanding of CEC physiology, and the process of cultivating and administering effective cell therapy are reviewed as well. SUMMARY The latest developments in cell therapy for corneal endothelial disease are presented. The continuous growth in this field gives rise to the hope that a viable solution to the large numbers of corneal blind around the world will one day be reality.
Collapse
Affiliation(s)
- Evan N Wong
- Corneal and External Diseases Department, Singapore National Eye Centre
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute
| | - Jodhbir S Mehta
- Corneal and External Diseases Department, Singapore National Eye Centre
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School
- School of Material Science & Engineering and School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Maurizi E, Merra A, Schiroli D, Ghezzi B, Macaluso C, Pellegrini G. Fluctuations in Corneal Endothelial LAP2 Expression Levels Correlate with Passage Dependent Declines in Their Cell Proliferative Activity. Int J Mol Sci 2022; 23:ijms23105859. [PMID: 35628669 PMCID: PMC9146651 DOI: 10.3390/ijms23105859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
The corneal endothelium is the inner corneal mono-layered epithelium, fundamental for preserving corneal hydration and transparency. However, molecular mechanisms that regulate corneal endothelial cells (CEnCs), in particular regarding their proliferative capacity, have been only partially elucidated. CEnCs are quiescent in vivo and they easily undergo endothelial to mesenchymal transition (EnMT) in vitro. This study aims to analyze CEnCs behavior and expression in vitro, either in sub-confluent growing (S) or confluent (C) CEnCs cultures. Primary rabbit and human CEnCs were cultured and used for RT-PCR, immunofluorescence or western blot analysis. These methods allowed identifying a novel molecular marker, LAP2, that is upregulated in S while downregulated in C human or rabbit CEnCs. Those results were observed for several subsequent passages in culture and this, together with the correlation between ki67 and LAP2 expression, suggested LAP2 as a novel possible indicator for culture ageing. Finally, treatment with FGF and TGFβ in rCEnCs highlighted how LAP2 can vary as the cells regulate their proliferative state. In conclusion, we have identified a novel marker for CEnCs, LAP2, that regulates its expression depending on the cells sub/confluent state and that correlates with CEnCs proliferation.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Correspondence:
| | - Alessia Merra
- Holostem Terapie Avanzate S.r.l., 41125 Modena, Italy;
| | - Davide Schiroli
- Transfusion Medicine Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy;
| | - Benedetta Ghezzi
- Dentistry Centre Lab, University of Parma, 43126 Parma, Italy; (B.G.); (C.M.)
| | - Claudio Macaluso
- Dentistry Centre Lab, University of Parma, 43126 Parma, Italy; (B.G.); (C.M.)
| | - Graziella Pellegrini
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Holostem Terapie Avanzate S.r.l., 41125 Modena, Italy;
| |
Collapse
|
11
|
Smeringaiova I, Paaske Utheim T, Jirsova K. Ex vivo expansion and characterization of human corneal endothelium for transplantation: a review. Stem Cell Res Ther 2021; 12:554. [PMID: 34717745 PMCID: PMC8556978 DOI: 10.1186/s13287-021-02611-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium plays a key role in maintaining corneal transparency. Its dysfunction is currently treated with penetrating or lamellar keratoplasty. Advanced cell therapy methods seek to address the persistent global deficiency of donor corneas by enabling the renewal of the endothelial monolayer with tissue-engineered grafts. This review provides an overview of recently published literature on the preparation of endothelial grafts for transplantation derived from cadaveric corneas that have developed over the last decade (2010–2021). Factors such as the most suitable donor parameters, culture substrates and media, endothelial graft storage conditions, and transplantation methods are discussed. Despite efforts to utilize alternative cellular sources, such as induced pluripotent cells, cadaveric corneas appear to be the best source of cells for graft preparation to date. However, native endothelial cells have a limited natural proliferative capacity, and they often undergo rapid phenotype changes in ex vivo culture. This is the main reason why no culture protocol for a clinical-grade endothelial graft prepared from cadaveric corneas has been standardized so far. Currently, the most established ex vivo culture protocol involves the peel-and-digest method of cell isolation and cell culture by the dual media method, including the repeated alternation of high and low mitogenic conditions. Culture media are enriched by additional substances, such as signaling pathway (Rho-associated protein kinase, TGF-β, etc.) inhibitors, to stimulate proliferation and inhibit unwanted morphological changes, particularly the endothelial-to-mesenchymal transition. To date, this promising approach has led to the development of endothelial grafts for the first in-human clinical trial in Japan. In addition to the lack of a standard culture protocol, endothelial-specific markers are still missing to confirm the endothelial phenotype in a graft ready for clinical use. Because the corneal endothelium appears to comprise phenotypically heterogeneous populations of cells, the genomic and proteomic expression of recently proposed endothelial-specific markers, such as Cadherin-2, CD166, or SLC4A11, must be confirmed by additional studies. The preparation of endothelial grafts is still challenging today, but advances in tissue engineering and surgery over the past decade hold promise for the successful treatment of endothelial dysfunctions in more patients worldwide.
Collapse
Affiliation(s)
- Ingrida Smeringaiova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic.
| |
Collapse
|
12
|
Altered gene expression in slc4a11 -/- mouse cornea highlights SLC4A11 roles. Sci Rep 2021; 11:20885. [PMID: 34686736 PMCID: PMC8536660 DOI: 10.1038/s41598-021-98921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
SLC4A11 is a H+/NH3/water transport protein, of corneal endothelial cells. SLC4A11 mutations cause congenital hereditary endothelial dystrophy and some cases of Fuchs endothelial corneal dystrophy. To probe SLC4A11’s roles, we compared gene expression in RNA from corneas of 17-week-old slc4a11−/− (n = 3) and slc4a11+/+ mice (n = 3) and subjected to RNA sequencing. mRNA levels for a subset of genes were also assessed by quantitative real-time reverse transcription PCR (qRT RT-PCR). Cornea expressed 13,173 genes, which were rank-ordered for their abundance. In slc4a11−/− corneas, 100 genes had significantly altered expression. Abundant slc14a1 expression, encoding the urea transporter UT-A, suggests a significant role in the cornea. The set of genes with altered expression was subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, revealing that alterations clustered into extracellular region, cytoskeleton, cell adhesion and plasma membrane functions. Gene expression changes further clustered into classes (with decreasing numbers of genes): cell fate and development, extracellular matrix and cell adhesion, cytoskeleton, ion homeostasis and energy metabolism. Together these gene changes confirm earlier suggestions of a role of SLC4A11 in ion homeostasis, energy metabolism, cell adhesion, and reveal an unrecognized SLC4A11 role in cytoskeletal organization.
Collapse
|
13
|
Maurizi E, Adamo D, Magrelli FM, Galaverni G, Attico E, Merra A, Maffezzoni MBR, Losi L, Genna VG, Sceberras V, Pellegrini G. Regenerative Medicine of Epithelia: Lessons From the Past and Future Goals. Front Bioeng Biotechnol 2021; 9:652214. [PMID: 33842447 PMCID: PMC8026866 DOI: 10.3389/fbioe.2021.652214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
This article explores examples of successful and unsuccessful regenerative medicine on human epithelia. To evaluate the applications of the first regenerated tissues, the analysis of the past successes and failures addresses some pending issues and lay the groundwork for developing new therapies. Research should still be encouraged to fill the gap between pathologies, clinical applications and what regenerative medicine can attain with current knowledge.
Collapse
Affiliation(s)
| | - Davide Adamo
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giulia Galaverni
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Eustachio Attico
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Graziella Pellegrini
- Holostem Terapie Avanzate S.r.l., Modena, Italy
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|