1
|
Shi TH, Nagata Y, Akine S, Ohtani S, Kato K, Ogoshi T. A Twisted Chiral Cavitand with 5-Fold Symmetry and Its Length-Selective Binding Properties. J Am Chem Soc 2022; 144:23677-23684. [PMID: 36529936 DOI: 10.1021/jacs.2c11225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Controlling bottom-up syntheses from chiral seeds to construct architectures with specific chiralities is currently challenging. Herein, a twisted chiral cavitand with 5-fold symmetry was constructed by bottom-up synthesis using corannulene as the chiral seed and pillar[5]arene as the chiral wall. After docking between the seed and the wall, their dynamic chiralities (M and P) are fixed. Moreover, the formed hedges also exhibit M and P chirality. Through dynamic covalent bonding, the thermodynamically stable product is obtained selectively as a pair of enantiomers (MMM and PPP), where all three subcomponents, i.e., the corannulene, hedges, and pillar[5]arene, are tilted in the same direction. Furthermore, the twisted cavitand exhibits length-selective binding to alkylene dibromides, with three maximum binding constants being unexpectedly observed.
Collapse
Affiliation(s)
- Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI- ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 060-0810, Japan
| | - Shigehisa Akine
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.,Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
2
|
Kabata H, Aramaki H, Shimamoto N. Single-molecule evidence for a chemical ratchet in binding between the cam repressor and its operator. NANOSCALE 2022; 14:13315-13323. [PMID: 36065798 DOI: 10.1039/d2nr03454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The affinity for regulator-operator binding on DNA sometimes depends on the length of the DNA harboring the operator, which is known as the antenna effect. One-dimensional diffusion along DNA has been suggested to be the cause, but this may contradict the binding affinity independent of the reaction pathways, which is derived from the detailed balance of the reaction at equilibrium. Recently, the chemical ratchet was proposed to solve this contradiction by suggesting a stationary state containing microscopic non-equilibrium. In a single-molecule observation, P. putida CamR molecules associate with their operator via one-dimensional diffusion along the DNA, while they mostly dissociated from the operator without the diffusion. Consistently, the observed overall association rate was dependent on the DNA length, while the overall dissociation rate was not, leading to an antenna effect. E. coli RNA polymerase did not show this behavior, and thus it is a specific property of a protein. The bipartite interaction domains containing the helix-turn-helix motif are speculated to be one of the possible causes. The biological significance of the chemical ratchet and a model for its microscopic mechanism are also discussed.
Collapse
Affiliation(s)
- Hiroyuki Kabata
- National Institute of Genetics, and Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| | - Hironori Aramaki
- Department of Molecular and Life Science, Faculty of Pharmacy, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Nobuo Shimamoto
- National Institute of Genetics, and Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
3
|
Shimamoto N. The Limitation of the Combination of Transition State Theory and Thermodynamics for the Reactions of Proteins and Nucleic Acids. Biomolecules 2021; 12:biom12010028. [PMID: 35053176 PMCID: PMC8774198 DOI: 10.3390/biom12010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
When a reaction is accompanied by a change with the speed close to or slower than the reaction rate, a circulating reaction flow can exist among the reaction states in the macroscopic stationary state. If the accompanying change were at equilibrium in the timescale of the relevant reaction, the transition-state theory would hold to eliminate the flow.
Collapse
Affiliation(s)
- Nobuo Shimamoto
- National Institute of Genetics, Mishima, Shizuoka-ken 411-8540, Japan
| |
Collapse
|
4
|
Tsubotani K, Maeyama S, Murakami S, Schaffer SW, Ito T. Taurine suppresses liquid-liquid phase separation of lysozyme protein. Amino Acids 2021; 53:745-751. [PMID: 33881613 DOI: 10.1007/s00726-021-02980-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 01/11/2023]
Abstract
Taurine is a compatible osmolyte that confers stability to proteins. Recent studies have revealed that liquid-liquid phase separation (LLPS) of proteins underlie the formation of membraneless organelles in cells. In the present study, we evaluated the role of taurine on LLPS of hen egg lysozyme. We demonstrated that taurine decreases the turbidity of the polyethylene glycol-induced crowding solution of lysozyme. We also demonstrated that taurine attenuates LLPS-dependent cloudiness of lysozyme solution with 0.5 or 1 M NaCl at a critical temperature. Moreover, we observed that taurine inhibits LLPS formation of a heteroprotein mix solution of lysozyme and ovalbumin. These data indicate that taurine can modulate the formation of LLPS of proteins.
Collapse
Affiliation(s)
- Kanae Tsubotani
- Department of Biosciences and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| | - Sayuri Maeyama
- Department of Biosciences and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| | - Shigeru Murakami
- Department of Biosciences and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| | - Stephen W Schaffer
- College of Medicine, University of South Alabama, 5795 Drive North, CSAB 170, Mobile, AL, 36688, USA
| | - Takashi Ito
- Department of Biosciences and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan.
| |
Collapse
|
5
|
Japaridze A, Yang W, Dekker C, Nasser W, Muskhelishvili G. DNA sequence-directed cooperation between nucleoid-associated proteins. iScience 2021; 24:102408. [PMID: 33997690 PMCID: PMC8099737 DOI: 10.1016/j.isci.2021.102408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) are a class of highly abundant DNA-binding proteins in bacteria and archaea. While both the composition and relative abundance of the NAPs change during the bacterial growth cycle, surprisingly little is known about their crosstalk in mutually binding and stabilizing higher-order nucleoprotein complexes in the bacterial chromosome. Here, we use atomic force microscopy and solid-state nanopores to investigate long-range nucleoprotein structures formed by the binding of two major NAPs, FIS and H-NS, to DNA molecules with distinct binding site arrangements. We find that spatial organization of the protein binding sites can govern the higher-order architecture of the nucleoprotein complexes. Based on sequence arrangement the complexes differed in their global shape and compaction as well as the extent of FIS and H-NS binding. Our observations highlight the important role the DNA sequence plays in driving structural differentiation within the bacterial chromosome. The location of protein binding sites along DNA is important for 3D organization FIS protein forms DNA loops while H-NS forms compact DNA plectonemes FIS DNA loops inhibit H-NS from spreading over the DNA FIS and H-NS competition creates regions of ‘open’ and ‘closed’ DNA
Collapse
Affiliation(s)
- Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wayne Yang
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Georgi Muskhelishvili
- School of Natural Sciences, Agricultural University of Georgia, Davit Aghmashenebeli Alley 240, 0159 Tbilisi, Georgia
| |
Collapse
|
6
|
Kinebuchi T, Shimamoto N. One-dimensional diffusion of TrpR along DNA enhances its affinity for the operator by chemical ratchet mechanism. Sci Rep 2021; 11:4255. [PMID: 33608564 PMCID: PMC7896080 DOI: 10.1038/s41598-021-83156-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/25/2021] [Indexed: 01/28/2023] Open
Abstract
Several DNA-binding proteins show the affinities for their specific DNA sites that positively depend on the length of DNA harboring the sites, i. e. antenna effect. DNA looping can cause the effect for proteins with two or more DNA binding sites, i. e. the looping mechanism. One-dimensional diffusion also has been suggested to cause the effect for proteins with single DNA sites, the diffusion mechanism, which could violate detailed balance. We addressed which mechanism is possible for E. coli TrpR showing 104-fold antenna effect with a single DNA binding site. When a trpO-harboring DNA fragment was connected to a nonspecific DNA with biotin-avidin connection, the otherwise sevenfold antenna effect disappeared. This result denies the looping mechanism with an unknown second DNA binding site. The 3.5-fold repression by TrpR in vivo disappeared when a tight LexA binding site was introduced at various sites near the trpO, suggesting that the binding of LexA blocks one-dimensional diffusion causing the antenna effect. These results are consistent with the chemical ratchet recently proposed for TrpR-trpO binding to solve the deviation from detailed balance, and evidence that the antenna effect due to one-dimensional diffusion exists in cells.
Collapse
Affiliation(s)
- Takashi Kinebuchi
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan.,Olympus Corporation, Quality Assurance and Regulatory Affairs, 2951 Ishikawa-machi, Hachioji-shi, Tokyo, 192-8507, Japan
| | - Nobuo Shimamoto
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan. .,Veritas Kitayama, 30-1-104 Shimogamo-Minamishiba-cho, Sakyoku, Kyoto, 606-0841, Japan.
| |
Collapse
|
7
|
Shimamoto N, Imashimizu M. RNA Polymerase and Transcription Mechanisms: The Forefront of Physicochemical Studies of Chemical Reactions. Biomolecules 2020; 11:E32. [PMID: 33383858 PMCID: PMC7823607 DOI: 10.3390/biom11010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
The study of transcription and its regulation is an interdisciplinary field that is closely connected with genetics, structural biology, and reaction theory. Among these, although less attention has been paid to reaction theory, it is becoming increasingly useful for research on transcription. Rate equations are commonly used to describe reactions involved in transcription, but they tend to be used unaware of the timescales of relevant physical processes. In this review, we discuss the limitation of rate equation for describing three-dimensional diffusion and one-dimensional diffusion along DNA. We then introduce the chemical ratchet mechanism recently proposed for explaining the antenna effect, an enhancement of the binding affinity to a specific site on longer DNA, which deviates from a thermodynamic rule. We show that chemical ratchet cannot be described with a single set of rate equations but alternative sets of rate equations that temporally switch no faster than the binding reaction.
Collapse
Affiliation(s)
- Nobuo Shimamoto
- National Institute of Genetics Mishima, Shizuoka-ken 411-8540, Japan
| | - Masahiko Imashimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan;
| |
Collapse
|