1
|
Panich W, Puttharugsa C, Tejangkura T, Chontananarth T. A simple color absorption analysis of colorimetric loop-mediated isothermal amplification for detection of Raillietina spp. in clinical samples using a 3D-printed tube holder coupled with a smartphone camera and notebook screen. Mikrochim Acta 2024; 191:603. [PMID: 39284926 DOI: 10.1007/s00604-024-06648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/21/2024] [Indexed: 10/13/2024]
Abstract
A simple method has been developed for semi-quantitative analysis of the colorimetric output of loop-mediated isothermal amplification (LAMP) using a 3D-printed tube holder with a smartphone and notebook for the detection of Raillietina, which is the cause of Raillietiniasis affecting free-range chicken farming. In this method, a light is directed from a notebook screen to the LAMP products in the tube holder and the color absorption of the LAMP products is measured by using the appropriate smartphone application. It was found that the malachite green dye-coupled LAMP (MaG-LAMP) assay showed the highest sensitivity and specificity for detecting Raillietina without any cross-reaction with other related parasites and hosts. The limit of detection was 10 fg/μL of DNA. A total of 60 fecal samples were infectively confirmed by microscopic examination and the results of microscopy compared with those of MaG-LAMP and triplex PCR assays. Microscopy and MaG-LAMP based on the color absorption demonstrated high agreement in Raillietina detection with kappa = 1. Rapid, simple, cost-effective, and easy interpretation of colorimetric LAMP assays and their high sensitivity make them superior to PCR and morphological investigation, demonstrating the feasibility of this assay in point-of-care screening to support farm management and solve chicken health problems. Our study presents is an alternative diagnostic method using semi-quantitative analysis of colorimetric LAMP based on the differing solution color absorptions between positive and negative reactions for infectious disease diagnosis.
Collapse
Affiliation(s)
- Wasin Panich
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Chokchai Puttharugsa
- Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thanawan Tejangkura
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
- Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thapana Chontananarth
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
- Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
2
|
Natsuhara D, Miyajima A, Bussho T, Okamoto S, Nagai M, Ihira M, Shibata T. A microfluidic-based quantitative analysis system for the multiplexed genetic diagnosis of human viral infections using colorimetric loop-mediated isothermal amplification. Analyst 2024; 149:3335-3345. [PMID: 38695841 DOI: 10.1039/d4an00215f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In this study, a microfluidic-based system utilizing colorimetric loop-mediated isothermal amplification (LAMP) is introduced for the quantitative analysis of nucleic acid targets. This system offers a user-friendly and cost-effective platform for the multiplexed genetic diagnosis of various infectious diseases across multiple samples. It includes time-lapse imaging equipment for capturing images of the microfluidic device during the LAMP assay and a hue-based quantitative analysis software to analyze the LAMP reaction, streamlining diagnostic procedures. An electric pipette was used to simplify the loading of samples and LAMP reagents into the device, allowing easy operation even by untrained individuals. The hue-based analysis software employs efficient image processing and post-processing techniques to calculate DNA amplification curves based on color changes in multiple reaction chambers. This software automates several tasks, such as identifying reaction chamber areas from time-lapse images, quantifying color information within each chamber, correcting baselines of DNA amplification curves, fitting experimental data to theoretical curves, and determining the threshold time for each curve. To validate the developed system, conventional off-chip LAMP assays were conducted with a 25 μL reaction mixture in 0.2 mL polymerase chain reaction (PCR) tubes using a real-time turbidimeter. The results indicated that the threshold time obtained using the colorimetric LAMP assay in the developed system is comparable to that obtained with real-time turbidity measurements in PCR tubes, demonstrating the system's capability for quantitative analysis of target nucleic acids, including those from human herpesviruses.
Collapse
Affiliation(s)
- Daigo Natsuhara
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan.
| | - Akira Miyajima
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan.
| | - Tomoya Bussho
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan.
| | - Shunya Okamoto
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan.
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan.
- Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, Aichi 441-8580, Japan
| | - Masaru Ihira
- Faculty of Clinical Science for Biological Monitoring, Fujita Health University, Aichi 470-1192, Japan
| | - Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan.
| |
Collapse
|
3
|
Caffrey M, Jayakumar N, Caffrey V, Anirudhan V, Rong L, Paprotny I. VLP-based model for the study of airborne viral pathogens. Microbiol Spectr 2024; 12:e0001324. [PMID: 38752752 PMCID: PMC11237701 DOI: 10.1128/spectrum.00013-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/21/2024] [Indexed: 05/28/2024] Open
Abstract
The recent COVID-19 pandemic has underscored the danger of airborne viral pathogens. The lack of model systems to study airborne pathogens limits the understanding of airborne pathogen distribution as well as potential surveillance and mitigation strategies. In this work, we develop a novel model system to study airborne pathogens using virus-like particles (VLPs). Specifically, we demonstrate the ability to aerosolize VLP and detect and quantify aerosolized VLP RNA by reverse transcription-loop-mediated isothermal amplification in real-time fluorescent and colorimetric assays. Importantly, the VLP model presents many advantages for the study of airborne viral pathogens: (i) similarity in size and surface components; (ii) ease of generation and noninfectious nature enabling the study of biosafety level 3 and biosafety level 4 viruses; (iii) facile characterization of aerosolization parameters; (iv) ability to adapt the system to other viral envelope proteins, including those of newly discovered pathogens and mutant variants; and (v) the ability to introduce viral sequences to develop nucleic acid amplification assays. IMPORTANCE The study and detection of airborne pathogens are hampered by the lack of appropriate model systems. In this work, we demonstrate that noninfectious virus-like particles (VLPs) represent attractive models to study airborne viral pathogens. Specifically, VLPs are readily prepared, are similar in size and composition to infectious viruses, and are amenable to highly sensitive nucleic acid amplification techniques.
Collapse
Affiliation(s)
- Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nitin Jayakumar
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Veronique Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Varada Anirudhan
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Igor Paprotny
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Lim J, Han W, Thang LTH, Lee YW, Shin JH. Customizable Nichrome Wire Heaters for Molecular Diagnostic Applications. BIOSENSORS 2024; 14:152. [PMID: 38534259 DOI: 10.3390/bios14030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Accurate sample heating is vital for nucleic acid extraction and amplification, requiring a sophisticated thermal cycling process in nucleic acid detection. Traditional molecular detection systems with heating capability are bulky, expensive, and primarily designed for lab settings. Consequently, their use is limited where lab systems are unavailable. This study introduces a technique for performing the heating process required in molecular diagnostics applicable for point-of-care testing (POCT), by presenting a method for crafting customized heaters using freely patterned nichrome (NiCr) wire. This technique, fabricating heaters by arranging protrusions on a carbon black-polydimethylsiloxane (PDMS) cast and patterning NiCr wire, utilizes cost-effective materials and is not constrained by shape, thereby enabling customized fabrication in both two-dimensional (2D) and three-dimensional (3D). To illustrate its versatility and practicality, a 2D heater with three temperature zones was developed for a portable device capable of automatic thermocycling for polymerase chain reaction (PCR) to detect Escherichia coli (E. coli) O157:H7 pathogen DNA. Furthermore, the detection of the same pathogen was demonstrated using a customized 3D heater surrounding a microtube for loop-mediated isothermal amplification (LAMP). Successful DNA amplification using the proposed heater suggests that the heating technique introduced in this study can be effectively applied to POCT.
Collapse
Affiliation(s)
- Juhee Lim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Won Han
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Le Tran Huy Thang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Yong Wook Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- School of Electrical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Joong Ho Shin
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Trinh TND, Nam NN. Isothermal amplification-based microfluidic devices for detecting foodborne pathogens: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1150-1157. [PMID: 38323529 DOI: 10.1039/d3ay02039h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The gold standard for nucleic acid amplification-based diagnosis is the polymerase chain reaction (PCR). The PCR recognizes the targets such as foodborne pathogens by amplifying their specific genes. The integration of nucleic acid amplification-based assays on microfluidic platforms represents a highly promising solution for convenient, cheap, and effective control of foodborne pathogens. However, the application of the PCR is limited to on-site detection because the method requires sophisticated equipment for temperature control, which makes it complicated for microfluidic integration. Alternatively, isothermal amplification methods are promising tools for integrating microfluidic platforms for on-site detection of foodborne pathogens. This review summarized advances in isothermal amplification-based microfluidic devices for detecting foodborne pathogens. Different nucleic acid extraction approaches and the integration of these approaches in microfluidic platforms were first reviewed. Microfluidic platforms integrated with three common isothermal amplification methods including loop-mediated isothermal amplification, recombinase polymerase amplification, and recombinase-aided amplification were then described and discussed.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam.
| | - Nguyen Nhat Nam
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| |
Collapse
|
6
|
Caffrey M, Jayakumar N, Caffrey V, Anirudan V, Rong L, Paprotny I. VLP-Based Model for Study of Airborne Viral Pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574055. [PMID: 38260552 PMCID: PMC10802359 DOI: 10.1101/2024.01.03.574055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The recent COVID-19 pandemic has underscored the danger of airborne viral pathogens. The lack of model systems to study airborne pathogens limits the understanding of airborne pathogen distribution, as well as potential surveillance and mitigation strategies. In this work, we develop a novel model system to study airborne pathogens using virus like particles (VLP). Specifically, we demonstrate the ability to aerosolize VLP and detect and quantify aerosolized VLP RNA by Reverse Transcription-Loop-Mediated Isothermal Amplification (RT-LAMP) in real-time fluorescent and colorimetric assays. Importantly, the VLP model presents many advantages for the study of airborne viral pathogens: (i) similarity in size and surface components; (ii) ease of generation and noninfectious nature enabling study of BSL3 and BSL4 viruses; (iii) facile characterization of aerosolization parameters; (iv) ability to adapt the system to other viral envelope proteins including those of newly discovered pathogens and mutant variants; (v) the ability to introduce viral sequences to develop nucleic acid amplification assays.
Collapse
Affiliation(s)
- Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Nitin Jayakumar
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Veronique Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Varada Anirudan
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612
| | - Igor Paprotny
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
7
|
Strachan S, Chakraborty M, Sallam M, Bhuiyan SA, Ford R, Nguyen NT. Maximising Affordability of Real-Time Colorimetric LAMP Assays. MICROMACHINES 2023; 14:2101. [PMID: 38004958 PMCID: PMC10673270 DOI: 10.3390/mi14112101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Molecular diagnostics have become indispensable in healthcare, agriculture, and environmental monitoring. This diagnostic form can offer rapid and precise identification of pathogens and biomarkers. However, traditional laboratory-based molecular testing methods can be expensive and require specialised training, limiting their accessibility in resource-limited settings and on-site applications. To overcome these challenges, this study proposes an innovative approach to reducing costs and complexity in portable colorimetric loop-mediated isothermal amplification (LAMP) devices. The research evaluates different resistive heating systems to create an energy-efficient, cost-effective, and compact device to heat a polydimethylsiloxane (PDMS) block for precise temperature control during LAMP reactions. By combining this novel heating system with an off-the-shelf red-green-blue (RGB) sensor to detect and quantify colour changes, the integrated system can accurately detect Leifsonia xyli subsp. xyli, the bacteria responsible for ratoon stunting disease (RSD) in sugarcane. The experimental validation of this system demonstrates its ability to detect the target pathogen in real time, making it an important development for low cost, portable, and easy-to-use molecular diagnostics in healthcare, agriculture, and environmental monitoring applications.
Collapse
Affiliation(s)
- Simon Strachan
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (M.C.); (M.S.); (R.F.)
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (S.A.B.); (N.-T.N.)
| | - Moutoshi Chakraborty
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (M.C.); (M.S.); (R.F.)
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia
| | - Mohamed Sallam
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (M.C.); (M.S.); (R.F.)
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (S.A.B.); (N.-T.N.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia
| | - Shamsul A. Bhuiyan
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (S.A.B.); (N.-T.N.)
- Sugar Research Australia, Woodford, QLD 4514, Australia
| | - Rebecca Ford
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (M.C.); (M.S.); (R.F.)
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (S.A.B.); (N.-T.N.)
| |
Collapse
|
8
|
Park H, Kim DR, Shin A, Jeong E, Son S, Ahn JH, Ahn SY, Choi SJ, Oh SY, Chang YS, Kim YJ, Kang M. Loop-mediated isothermal amplification assay for screening congenital cytomegalovirus infection in newborns. Appl Microbiol Biotechnol 2023; 107:6789-6798. [PMID: 37725139 PMCID: PMC10589182 DOI: 10.1007/s00253-023-12771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 09/21/2023]
Abstract
Congenital cytomegalovirus (CMV) infection is a common cause of sensorineural hearing loss and neurodevelopmental impairment in newborns. However, congenital CMV infection cannot be diagnosed using samples collected more than 3 weeks after birth because testing after this time cannot distinguish between congenital infection and postnatal infection. Herein, we developed a robust loop-mediated isothermal amplification (LAMP) assay for the large-scale screening of newborns for congenital CMV infection. In contrast to conventional quantitative polymerase chain reaction (qPCR), which detects CMV within a dynamic range of 1.0 × 106 to 1.0 × 102 copies/μL, our quantitative LAMP assay (qLAMP) detects CMV within a dynamic range of 1.1 × 108 to 1.1 × 103 copies/μL. Moreover, the turnaround time for obtaining results following DNA extraction is 90 min in qPCR but only 15 min in qLamp. The colorimetric LAMP assay can also detect CMV down to 1.1 × 103 copies/μL within 30 min, irrespective of the type of heat source. Our LAMP assay can be utilized in central laboratories as an alternative to conventional qPCR for quantitative CMV detection, or for point-of-care testing in low-resource environments, such as developing countries, via colorimetric naked-eye detection. KEY POINTS: • LAMP assay enables large-scale screening of newborns for congenital CMV infection. • LAMP allows colorimetric or quantitative detection of congenital CMV infection. • LAMP assay can be used as a point-of-care testing tool in low-resource environments.
Collapse
Affiliation(s)
- Hyeonseek Park
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Doo Ri Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Areum Shin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eunjung Jeong
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sohee Son
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Suk-Joo Choi
- Department of Gynecology and Obstetrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soo-Young Oh
- Department of Gynecology and Obstetrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Minhee Kang
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, Republic of Korea.
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Bao M, Waitkus J, Liu L, Chang Y, Xu Z, Qin P, Chen J, Du K. Micro- and nanosystems for the detection of hemorrhagic fever viruses. LAB ON A CHIP 2023; 23:4173-4200. [PMID: 37675935 DOI: 10.1039/d3lc00482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Hemorrhagic fever viruses (HFVs) are virulent pathogens that can cause severe and often fatal illnesses in humans. Timely and accurate detection of HFVs is critical for effective disease management and prevention. In recent years, micro- and nano-technologies have emerged as promising approaches for the detection of HFVs. This paper provides an overview of the current state-of-the-art systems for micro- and nano-scale approaches to detect HFVs. It covers various aspects of these technologies, including the principles behind their sensing assays, as well as the different types of diagnostic strategies that have been developed. This paper also explores future possibilities of employing micro- and nano-systems for the development of HFV diagnostic tools that meet the practical demands of clinical settings.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Jacob Waitkus
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Yu Chang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Zhiheng Xu
- Department of Industrial Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
10
|
Luo T, Li L, Wang S, Cheng N. Research Progress of Nucleic Acid Detection Technology for Genetically Modified Maize. Int J Mol Sci 2023; 24:12247. [PMID: 37569623 PMCID: PMC10418336 DOI: 10.3390/ijms241512247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Genetically modified (GM) maize is one of the earliest GM crops to have achieved large-scale commercial cultivation globally, and it is of great significance to excel in the development and implementation of safety policy regarding GM, and in its technical oversight. This article describes the general situation regarding genetically modified maize, including its varieties, applications, relevant laws and regulations, and so on. From a technical point of view, we summarize and critically analyze the existing methods for detecting nucleic acid levels in genetically modified maize. The nucleic acid extraction technology used for maize is explained, and the introduction of traditional detection techniques, which cover variable-temperature and isothermal amplification detection technology and gene chip technology, applications in maize are described. Moreover, new technologies are proposed, with special attention paid to nucleic acid detection methods using sensors. Finally, we review the current limitations and challenges of GM maize nucleic acid testing and share our vision for the future direction of this field.
Collapse
Affiliation(s)
- Tongyun Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Lujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Shirui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Nan Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
11
|
Yang C, Yang Y, Zhao G, Wang H, Dai Y, Huang X. A Low-Cost Microfluidic-Based Detection Device for Rapid Identification and Quantification of Biomarkers-Based on a Smartphone. BIOSENSORS 2023; 13:753. [PMID: 37504151 PMCID: PMC10377552 DOI: 10.3390/bios13070753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
The sensitive and rapid detection of microsamples is crucial for early diagnosis of diseases. The short response times and low sample volume requirements of microfluidic chips have shown great potential in early diagnosis, but there are still shortcomings such as complex preparation processes and high costs. We developed a low-cost smartphone-based fluorescence detection device (Smartphone-BFDD) without precision equipment for rapid identification and quantification of biomarkers on glass capillary. The device combines microfluidic technology with RGB image analysis, effectively reducing the sample volume to 20 μL and detection time to only 30 min. For the sensitivity of the device, we constructed a standard sandwich immunoassay (antibody-antigen-antibody) in a glass capillary using the N-protein of SARS-CoV-2 as a biological model, realizing a low limit of detection (LOD, 40 ng mL-1). This device provides potential applications for different biomarkers and offers wide use for rapid biochemical analysis in biomedical research.
Collapse
Affiliation(s)
- Chonghui Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yujing Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Gaozhen Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Huan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yang Dai
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
12
|
Danthanarayana AN, Nandy S, Kourentzi K, Vu B, Shelite TR, Travi BL, Brgoch J, Willson RC. Smartphone-readable RPA-LFA for the high-sensitivity detection of Leishmania kDNA using nanophosphor reporters. PLoS Negl Trop Dis 2023; 17:e0011436. [PMID: 37399214 PMCID: PMC10353800 DOI: 10.1371/journal.pntd.0011436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023] Open
Abstract
Early diagnosis of infectious diseases improves outcomes by enabling earlier delivery of effective treatment, and helps prevent further transmission by undiagnosed persons. We demonstrated a proof-of-concept assay combining isothermal amplification and lateral flow assay (LFA) for early diagnosis of cutaneous leishmaniasis, a vector-borne infectious disease that affects ca. 700,000 to 1.2 million people annually. Conventional molecular diagnostic techniques based on polymerase chain reaction (PCR) require complex apparatus for temperature cycling. Recombinase polymerase amplification (RPA) is an isothermal DNA amplification method that has shown promise for use in low-resource settings. Combined with lateral flow assay as the readout, RPA-LFA can be used as a point-of-care diagnostic tool with high sensitivity and specificity, but reagent costs can be problematic. In this work, we developed a highly-sensitive smartphone-based RPA-LFA for the detection of Leishmania panamensis DNA using blue-emitting [(Sr0.625Ba0.375)1.96Eu0.01Dy0.03]MgSi2O7 (SBMSO) persistent luminescent nanophosphors as LFA reporters. The greater detectability of nanophosphors allows the use of a reduced volume of RPA reagents, potentially reducing the cost of RPA-LFA. The limit of detection (LOD) of RPA with gold nanoparticle-based LFA readout is estimated at 1 parasite per reaction, but LOD can be 100-fold better, 0.01 parasites per reaction, for LFA based on SBMSO. This approach may be useful for sensitive and cost-effective point-of-care diagnosis and contribute to improved clinical and economic outcomes, especially in resource-limited settings.
Collapse
Affiliation(s)
| | - Suman Nandy
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Binh Vu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Thomas R Shelite
- Department of Biosafety, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruno L Travi
- Department of Biosafety, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jakoah Brgoch
- Department of Chemistry, University of Houston, Houston, Texas, United States of America
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
13
|
Venbrux M, Crauwels S, Rediers H. Current and emerging trends in techniques for plant pathogen detection. FRONTIERS IN PLANT SCIENCE 2023; 14:1120968. [PMID: 37223788 PMCID: PMC10200959 DOI: 10.3389/fpls.2023.1120968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/21/2023] [Indexed: 05/25/2023]
Abstract
Plant pathogenic microorganisms cause substantial yield losses in several economically important crops, resulting in economic and social adversity. The spread of such plant pathogens and the emergence of new diseases is facilitated by human practices such as monoculture farming and global trade. Therefore, the early detection and identification of pathogens is of utmost importance to reduce the associated agricultural losses. In this review, techniques that are currently available to detect plant pathogens are discussed, including culture-based, PCR-based, sequencing-based, and immunology-based techniques. Their working principles are explained, followed by an overview of the main advantages and disadvantages, and examples of their use in plant pathogen detection. In addition to the more conventional and commonly used techniques, we also point to some recent evolutions in the field of plant pathogen detection. The potential use of point-of-care devices, including biosensors, have gained in popularity. These devices can provide fast analysis, are easy to use, and most importantly can be used for on-site diagnosis, allowing the farmers to take rapid disease management decisions.
Collapse
Affiliation(s)
- Marc Venbrux
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Sam Crauwels
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Hans Rediers
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Rapid and simple colorimetric detection of quiescent Colletotrichum in harvested fruit using reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) technology. Talanta 2023; 255:124251. [PMID: 36630787 DOI: 10.1016/j.talanta.2023.124251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Anthracnose, caused by the fungus Colletotrichum gloeosporioides, is one of the major causes of postharvest decay of fruits and vegetables. Detection of the pathogen at an early stage of infection is crucial to developing a disease management strategy. In this work, a loop-mediated isothermal amplification (LAMP) assay was developed for the rapid detection of C. gloeosporioides targeting the transcript enoyl-CoA hydratase (ECH) that significantly upregulates only during C. gloeosporioides quiescent stage. The assay enabled a naked-eye detection of C. gloeosporioides RNA within 23 min based on a color change of LAMP products from pink to yellow. The detection limit of the LAMP assay was 1 pg of total RNA extracted from fruit peel in a 25 μL reaction. Positive results were obtained only in samples carrying the ECH gene, whereas no cross-reaction was observed for a different quiescent marker (histone deacetylase (HDAC)) or an appressorium marker (scytalone dehydratase, (SD)), indicating the high specificity of the method. Hence, the results indicate that the developed LAMP assay is a rapid, highly sensitive, and specific tool for the early detection of quiescent C. gloeosporioides and could be employed to manage postharvest diseases.
Collapse
|
15
|
Naghdi T, Ardalan S, Asghari Adib Z, Sharifi AR, Golmohammadi H. Moving toward smart biomedical sensing. Biosens Bioelectron 2023; 223:115009. [PMID: 36565545 DOI: 10.1016/j.bios.2022.115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The development of novel biomedical sensors as highly promising devices/tools in early diagnosis and therapy monitoring of many diseases and disorders has recently witnessed unprecedented growth; more and faster than ever. Nonetheless, on the eve of Industry 5.0 and by learning from defects of current sensors in smart diagnostics of pandemics, there is still a long way to go to achieve the ideal biomedical sensors capable of meeting the growing needs and expectations for smart biomedical/diagnostic sensing through eHealth systems. Herein, an overview is provided to highlight the importance and necessity of an inevitable transition in the era of digital health/Healthcare 4.0 towards smart biomedical/diagnostic sensing and how to approach it via new digital technologies including Internet of Things (IoT), artificial intelligence, IoT gateways (smartphones, readers), etc. This review will bring together the different types of smartphone/reader-based biomedical sensors, which have been employing for a wide variety of optical/electrical/electrochemical biosensing applications and paving the way for future eHealth diagnostic devices by moving towards smart biomedical sensing. Here, alongside highlighting the characteristics/criteria that should be met by the developed sensors towards smart biomedical sensing, the challenging issues ahead are delineated along with a comprehensive outlook on this extremely necessary field.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Sina Ardalan
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Zeinab Asghari Adib
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Amir Reza Sharifi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
16
|
Bui HK, Phan VM, Nguyen HQ, Nguyen VD, Nguyen HV, Seo TS. Function of the Speech Recognition of the Smartphone to Automatically Operate a Portable Sample Pretreatment Microfluidic System. ACS Sens 2023; 8:515-521. [PMID: 36722714 DOI: 10.1021/acssensors.2c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We proposed a portable sample pretreatment microsystem, which can be automatically operated through speech recognition in a smartphone app. The proposed sample pretreatment microsystem consists of a microfluidic chip, an air router, pressure and vacuum lines with air pump motors, six 3-way solenoid valves, and a microcontroller with a Bluetooth module. The command of a human voice conducted the whole process of DNA extraction from pathogenic bacterial samples. Thus, manual interference during the DNA extraction is eliminated, preventing any potential infection from human touch. The palm-sized sample pretreatment microsystem can be run by a portable battery or a conventional smartphone charger. Genomic DNA ofSalmonella typhimuriumwas purified on a chip in less than 1 min with an extraction efficiency of 70 ± 5%.
Collapse
Affiliation(s)
- Hoang Khang Bui
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea
| | - Vu Minh Phan
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea
| | - Huynh Quoc Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea
| | - Van Dan Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea
| | - Hiep Van Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea
| | - Tae Seok Seo
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea
| |
Collapse
|
17
|
Overview of Optical Biosensors for Early Cancer Detection: Fundamentals, Applications and Future Perspectives. BIOLOGY 2023; 12:biology12020232. [PMID: 36829508 PMCID: PMC9953566 DOI: 10.3390/biology12020232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 02/05/2023]
Abstract
Conventional cancer detection and treatment methodologies are based on surgical, chemical and radiational processes, which are expensive, time consuming and painful. Therefore, great interest has been directed toward developing sensitive, inexpensive and rapid techniques for early cancer detection. Optical biosensors have advantages in terms of high sensitivity and being label free with a compact size. In this review paper, the state of the art of optical biosensors for early cancer detection is presented in detail. The basic idea, sensitivity analysis, advantages and limitations of the optical biosensors are discussed. This includes optical biosensors based on plasmonic waveguides, photonic crystal fibers, slot waveguides and metamaterials. Further, the traditional optical methods, such as the colorimetric technique, optical coherence tomography, surface-enhanced Raman spectroscopy and reflectometric interference spectroscopy, are addressed.
Collapse
|
18
|
Wang J, Jiang H, Pan L, Gu X, Xiao C, Liu P, Tang Y, Fang J, Li X, Lu C. Rapid on-site nucleic acid testing: On-chip sample preparation, amplification, and detection, and their integration into all-in-one systems. Front Bioeng Biotechnol 2023; 11:1020430. [PMID: 36815884 PMCID: PMC9930993 DOI: 10.3389/fbioe.2023.1020430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
As nucleic acid testing is playing a vital role in increasingly many research fields, the need for rapid on-site testing methods is also increasing. The test procedure often consists of three steps: Sample preparation, amplification, and detection. This review covers recent advances in on-chip methods for each of these three steps and explains the principles underlying related methods. The sample preparation process is further divided into cell lysis and nucleic acid purification, and methods for the integration of these two steps on a single chip are discussed. Under amplification, on-chip studies based on PCR and isothermal amplification are covered. Three isothermal amplification methods reported to have good resistance to PCR inhibitors are selected for discussion due to their potential for use in direct amplification. Chip designs and novel strategies employed to achieve rapid extraction/amplification with satisfactory efficiency are discussed. Four detection methods providing rapid responses (fluorescent, optical, and electrochemical detection methods, plus lateral flow assay) are evaluated for their potential in rapid on-site detection. In the final section, we discuss strategies to improve the speed of the entire procedure and to integrate all three steps onto a single chip; we also comment on recent advances, and on obstacles to reducing the cost of chip manufacture and achieving mass production. We conclude that future trends will focus on effective nucleic acid extraction via combined methods and direct amplification via isothermal methods.
Collapse
Affiliation(s)
- Jingwen Wang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Leiming Pan
- Zhejiang Hongzheng Testing Co., Ltd., Ningbo, China
| | - Xiuying Gu
- Zhejiang Gongzheng Testing Center Co., Ltd., Hangzhou, China
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Pengpeng Liu
- Key Laboratory of Biosafety detection for Zhejiang Market Regulation, Zhejiang Fangyuan Testing Group LO.T, Hangzhou, China
| | - Yulong Tang
- Hangzhou Tiannie Technology Co., Ltd., Hangzhou, China
| | - Jiehong Fang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoqian Li
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chenze Lu
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
19
|
Tackling the issue of healthcare associated infections through point-of-care devices. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
20
|
Shigemori H, Maejima K, Shibata H, Hiruta Y, Citterio D. Evaluation of cellophane as platform for colorimetric assays on microfluidic analytical devices. Mikrochim Acta 2023; 190:48. [PMID: 36622479 DOI: 10.1007/s00604-022-05622-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
Due to their low cost, simplicity, and pump-free liquid transport properties, colorimetric assays on paper spots and microfluidic paper-based analytical devices (µPADs) are regarded as useful tools for point-of-care testing (POCT). However, for certain types of colorimetric assays, the "non-transparent" and "white" characters of paper can be a disadvantage. In this work, the possibilities of using cellophane as an alternative platform for colorimetric assays have been investigated. Cellophane is a low cost and easy-to-handle transparent film made of regenerated cellulose. Owing to its hydrophilic character, cellophane-based microfluidic channels fabricated through a print-cut-laminate approach enabled pump-free liquid transport into multiple detection areas, similar to µPADs. In addition, the water absorption characteristics of cellophane allowed the stable immobilization of water-soluble colorimetric indicators without any surface modification or additional reagents. The transparency of cellophane provides possibilities for simple background coloring of the substrates, increasing the dynamic signal range for hue-based colorimetric assays, as demonstrated for two model assays targeting H2O2 (46-fold increase) and creatinine (3.6-fold increase). Finally, a turbidity detection-based protein assay was realized on black background cellophane spots. The lowest limits of detection achieved with the cellophane-based devices were calculated as 7 µM for H2O2, 2.7 mg dL-1 for creatinine, and 3.5 mg dL-1 for protein (human serum albumin).
Collapse
Affiliation(s)
- Hiroki Shigemori
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan.,AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Photonics Center Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.,Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-Ku, Kobe, Hyogo, 657-0011, Japan
| | - Kento Maejima
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Hiroyuki Shibata
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
21
|
Zhai Y, Yu H, Liu X, Zhang M, Han R, Yin C, Liu X, Li H, Li J, Song X. Visual detection of Staphylococcus aureus based on immunomagnetic separation and polymerase spiral reaction. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Shirshikov FV, Bespyatykh JA. Loop-Mediated Isothermal Amplification: From Theory to Practice. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:1159-1174. [PMID: 36590469 PMCID: PMC9788664 DOI: 10.1134/s106816202206022x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
Increasing the accuracy of pathogen identification and reducing the duration of analysis remain relevant for modern molecular diagnostics up to this day. In laboratory and clinical practice, detection of pathogens mostly relies on methods of nucleic acid amplification, among which the polymerase chain reaction (PCR) is considered the "gold standard." Nevertheless, in some cases, isothermal amplification methods act as an alternative to PCR diagnostics. Upon more than thirty years of the development of isothermal DNA synthesis, the appearance of loop-mediated isothermal amplification (LAMP) has enabled new directions of in-field diagnostics of bacterial and viral infections. This review examines the key characteristics of the LAMP method and corresponding features in practice. We discuss the structure of LAMP amplicons with single-stranded loops, which have the sites for primer annealing under isothermal conditions. The latest achievements in the modification of the LAMP method are analyzed, which allow considering it as a unique platform for creating the next-generation diagnostic assays.
Collapse
Affiliation(s)
- F. V. Shirshikov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - J. A. Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
23
|
Das D, Lin CW, Chuang HS. LAMP-Based Point-of-Care Biosensors for Rapid Pathogen Detection. BIOSENSORS 2022; 12:bios12121068. [PMID: 36551035 PMCID: PMC9775414 DOI: 10.3390/bios12121068] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/01/2023]
Abstract
Seeking optimized infectious pathogen detection tools is of primary importance to lessen the spread of infections, allowing prompt medical attention for the infected. Among nucleic-acid-based sensing techniques, loop-mediated isothermal amplification is a promising method, as it provides rapid, sensitive, and specific detection of microbial and viral pathogens and has enormous potential to transform current point-of-care molecular diagnostics. In this review, the advances in LAMP-based point-of-care diagnostics assays developed during the past few years for rapid and sensitive detection of infectious pathogens are outlined. The numerous detection methods of LAMP-based biosensors are discussed in an end-point and real-time manner with ideal examples. We also summarize the trends in LAMP-on-a-chip modalities, such as classical microfluidic, paper-based, and digital LAMP, with their merits and limitations. Finally, we provide our opinion on the future improvement of on-chip LAMP methods. This review serves as an overview of recent breakthroughs in the LAMP approach and their potential for use in the diagnosis of existing and emerging diseases.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
24
|
Seok Y, Yin Q, Li R, Mauk MG, Bai H, Bau HH. Manually-Operated, Slider Cassette for Multiplexed Molecular Detection at the Point of Care. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 369:132353. [PMID: 38756788 PMCID: PMC11097106 DOI: 10.1016/j.snb.2022.132353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Effective control of epidemics, individualized medicine, and new drugs with virologic response-dependent dose and timing require, among other things, simple, inexpensive, multiplexed molecular detection platforms suitable for point of care and home use. Herein, we describe our progress towards developing such a platform that includes sample lysis, nucleic acid isolation, concentration, purification, and amplification. Our diagnostic device comprises a sliding component that houses the nucleic acid isolation membrane and a housing containing three amplification reaction chambers with dry stored reagents, blisters with buffers and wash solutions, and absorption pads to facilitate capillarity pull and waste storage. After sample introduction, the user slides the slider within the housing from one station to another to carry out various unit operations. The slider motion induces blisters to discharge their contents, effectuating washes, and eventual elution of captured nucleic acids into reaction chambers. The slider cassette mates with a processor that incubates isothermal amplification but can also be made to operate instrumentation-free. We demonstrate our cassette's utility for the co-detection of the human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). These three blood-borne pathogens co-infect many people worldwide with severe personal and public health consequences.
Collapse
Affiliation(s)
- Youngung Seok
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33 Street, Philadelphia, PA 19104, USA
| | - Qingtian Yin
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33 Street, Philadelphia, PA 19104, USA
| | - Ruijie Li
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33 Street, Philadelphia, PA 19104, USA
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China
| | - Michael G. Mauk
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33 Street, Philadelphia, PA 19104, USA
| | - Huiwen Bai
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33 Street, Philadelphia, PA 19104, USA
| | - Haim H. Bau
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33 Street, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Myers FB, Moffatt B, El Khaja R, Chatterjee T, Marwaha G, McGee M, Mitra D. A robust, low-cost instrument for real-time colorimetric isothermal nucleic acid amplification. PLoS One 2022; 17:e0256789. [PMID: 36178899 PMCID: PMC9524685 DOI: 10.1371/journal.pone.0256789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for broader access to molecular diagnostics. Colorimetric isothermal nucleic acid amplification assays enable simplified instrumentation over more conventional PCR diagnostic assays and, as such, represent a promising approach for addressing this need. In particular, colorimetric LAMP (loop-mediated isothermal amplification) has received a great deal of interest recently. However, there do not currently exist robust instruments for performing these kinds of assays in high throughput with real-time readout of amplification signals. To address this need, we developed LARI, the LAMP Assay Reader Instrument. We have deployed over 50 LARIs for routine use in R&D and production environments, with over 12,000 assays run to date. In this paper, we present the design and construction of LARI along with thermal, optical, and assay performance characteristics. LARI can be produced for under $1500 and has broad applications in R&D, point-of-care diagnostics, and global health.
Collapse
Affiliation(s)
- Frank B. Myers
- Research & Development, Lucira Health, Inc., Emeryville, CA, United States of America
- * E-mail:
| | - Brian Moffatt
- Manufacturing Engineering, Lucira Health, Inc., Emeryville, CA, United States of America
| | - Ragheb El Khaja
- Research & Development, Lucira Health, Inc., Emeryville, CA, United States of America
| | - Titatsh Chatterjee
- Research & Development, Lucira Health, Inc., Emeryville, CA, United States of America
| | - Gurmeet Marwaha
- Quality Control, Lucira Health Inc., Emeryville, CA, United States of America
| | - Max McGee
- Research & Development, Lucira Health, Inc., Emeryville, CA, United States of America
| | - Debkishore Mitra
- Research & Development, Lucira Health, Inc., Emeryville, CA, United States of America
| |
Collapse
|
26
|
Improved visual detection of DNA amplification using pyridylazophenol metal sensing dyes. Commun Biol 2022; 5:999. [PMID: 36130997 PMCID: PMC9491268 DOI: 10.1038/s42003-022-03973-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Detection of nucleic acid amplification has typically required sophisticated laboratory instrumentation, but as the amplification techniques have moved away from the lab, complementary detection techniques have been implemented to facilitate point-of-care, field, and even at-home applications. Simple visual detection approaches have been widely used for isothermal amplification methods, but have generally displayed weak color changes or been highly sensitive to sample and atmospheric effects. Here we describe the use of pyridylazophenol dyes and binding to manganese ion to produce a strong visible color that changes in response to nucleic acid amplification. This detection approach is easily quantitated with absorbance, rapidly and clearly visible by eye, robust to sample effects, and notably compatible with both isothermal and PCR amplification. Nucleic acid amplification and molecular diagnostic methods are being used in an increasing number of novel applications and settings, and the ability to reliably and sensitively detect them without the need for additional instrumentation will enable even more access to these powerful techniques.
Collapse
|
27
|
García-Bernalt Diego J, Fernández-Soto P, Márquez-Sánchez S, Santos Santos D, Febrer-Sendra B, Crego-Vicente B, Muñoz-Bellido JL, Belhassen-García M, Corchado Rodríguez JM, Muro A. SMART-LAMP: A Smartphone-Operated Handheld Device for Real-Time Colorimetric Point-of-Care Diagnosis of Infectious Diseases via Loop-Mediated Isothermal Amplification. BIOSENSORS 2022; 12:bios12060424. [PMID: 35735571 PMCID: PMC9221248 DOI: 10.3390/bios12060424] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 05/04/2023]
Abstract
Nucleic acid amplification diagnostics offer outstanding features of sensitivity and specificity. However, they still lack speed and robustness, require extensive infrastructure, and are neither affordable nor user-friendly. Thus, they have not been extensively applied in point-of-care diagnostics, particularly in low-resource settings. In this work, we have combined the loop-mediated isothermal amplification (LAMP) technology with a handheld portable device (SMART-LAMP) developed to perform real-time isothermal nucleic acid amplification reactions, based on simple colorimetric measurements, all of which are Bluetooth-controlled by a dedicated smartphone app. We have validated its diagnostic utility regarding different infectious diseases, including Schistosomiasis, Strongyloidiasis, and COVID-19, and analyzed clinical samples from suspected COVID-19 patients. Finally, we have proved that the combination of long-term stabilized LAMP master mixes, stored and transported at room temperature with our developed SMART-LAMP device, provides an improvement towards true point-of-care diagnosis of infectious diseases in settings with limited infrastructure. Our proposal could be easily adapted to the diagnosis of other infectious diseases.
Collapse
Affiliation(s)
- Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (B.F.-S.); (B.C.-V.)
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (B.F.-S.); (B.C.-V.)
- Correspondence: (P.F.-S.); (A.M.); Tel.: +34-677596173 (ext. 6861) (P.F.-S.)
| | - Sergio Márquez-Sánchez
- BISITE Research Group, University of Salamanca, Calle Espejo s/n. Edificio Multiusos I+D+i, 37007 Salamanca, Spain; (S.M.-S.); (D.S.S.); (J.M.C.R.)
- Air Institute, IoT Digital Innovation Hub (Spain), 37188 Salamanca, Spain
| | - Daniel Santos Santos
- BISITE Research Group, University of Salamanca, Calle Espejo s/n. Edificio Multiusos I+D+i, 37007 Salamanca, Spain; (S.M.-S.); (D.S.S.); (J.M.C.R.)
| | - Begoña Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (B.F.-S.); (B.C.-V.)
| | - Beatriz Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (B.F.-S.); (B.C.-V.)
| | - Juan Luis Muñoz-Bellido
- Microbiology and Parasitology Service, Complejo Asistencial Universitario de Salamanca, University of Salamanca, 37007 Salamanca, Spain;
| | - Moncef Belhassen-García
- Internal Medicine Service, Infectious Diseases Section, Complejo Asistencial Universitario de Salamanca, University of Salamanca, 37007 Salamanca, Spain;
| | - Juan M. Corchado Rodríguez
- BISITE Research Group, University of Salamanca, Calle Espejo s/n. Edificio Multiusos I+D+i, 37007 Salamanca, Spain; (S.M.-S.); (D.S.S.); (J.M.C.R.)
- Air Institute, IoT Digital Innovation Hub (Spain), 37188 Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.G.-B.D.); (B.F.-S.); (B.C.-V.)
- Correspondence: (P.F.-S.); (A.M.); Tel.: +34-677596173 (ext. 6861) (P.F.-S.)
| |
Collapse
|
28
|
Islam MM, Koirala D. Toward a next-generation diagnostic tool: A review on emerging isothermal nucleic acid amplification techniques for the detection of SARS-CoV-2 and other infectious viruses. Anal Chim Acta 2022; 1209:339338. [PMID: 35569864 PMCID: PMC8633689 DOI: 10.1016/j.aca.2021.339338] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 01/09/2023]
Abstract
As the COVID-19 pandemic continues to affect human health across the globe rapid, simple, point-of-care (POC) diagnosis of infectious viruses such as SARS-CoV-2 remains challenging. Polymerase chain reaction (PCR)-based diagnosis has risen to meet these demands and despite its high-throughput and accuracy, it has failed to gain traction in the rapid, low-cost, point-of-test settings. In contrast, different emerging isothermal amplification-based detection methods show promise in the rapid point-of-test market. In this comprehensive study of the literature, several promising isothermal amplification methods for the detection of SARS-CoV-2 are critically reviewed that can also be applied to other infectious viruses detection. Starting with a brief discussion on the SARS-CoV-2 structure, its genomic features, and the epidemiology of the current pandemic, this review focuses on different emerging isothermal methods and their advancement. The potential of isothermal amplification combined with the revolutionary CRISPR/Cas system for a more powerful detection tool is also critically reviewed. Additionally, the commercial success of several isothermal methods in the pandemic are highlighted. Different variants of SARS-CoV-2 and their implication on isothermal amplifications are also discussed. Furthermore, three most crucial aspects in achieving a simple, fast, and multiplexable platform are addressed.
Collapse
|
29
|
Savonnet M, Aubret M, Laurent P, Roupioz Y, Cubizolles M, Buhot A. Kinetics of Isothermal Dumbbell Exponential Amplification: Effects of Mix Composition on LAMP and Its Derivatives. BIOSENSORS 2022; 12:bios12050346. [PMID: 35624647 PMCID: PMC9138685 DOI: 10.3390/bios12050346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is an exponential amplification method of DNA strands that is more and more used for its high performances. Thanks to its high sensitivity and selectivity, LAMP found numerous applications from the detection of pathogens or viruses through their genome amplification to its incorporation as an amplification strategy in protein or miRNA biomarker quantification. The LAMP method is composed of two stages: the first one consists in the transformation of the DNA strands into dumbbell structures formed of two stems and loops thanks to four primers; then, in the second stage, only two primers are required to amplify the dumbbells exponentially in numerous hairpins of increasing lengths. In this paper, we propose a theoretical framework to analyze the kinetics of the second stage of LAMP, the isothermal dumbbell exponential amplification (IDEA) as function of the physico-chemical parameters of the amplification reaction. Dedicated experiments validate the models. We believe these results may help the optimization of LAMP performances by reducing the number of experiments necessary to find the best parameters.
Collapse
Affiliation(s)
- Maud Savonnet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France; (M.S.); (M.A.); (Y.R.)
- Microfluidic Systems and Bioengineering Lab, Technologies for Healthcare and Biology Department, Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France;
| | - Mathilde Aubret
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France; (M.S.); (M.A.); (Y.R.)
- Microfluidic Systems and Bioengineering Lab, Technologies for Healthcare and Biology Department, Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France;
| | - Patricia Laurent
- Microfluidic Systems and Bioengineering Lab, Technologies for Healthcare and Biology Department, Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France;
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France; (M.S.); (M.A.); (Y.R.)
| | - Myriam Cubizolles
- Microfluidic Systems and Bioengineering Lab, Technologies for Healthcare and Biology Department, Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France;
- Correspondence: (M.C.); (A.B.)
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France; (M.S.); (M.A.); (Y.R.)
- Correspondence: (M.C.); (A.B.)
| |
Collapse
|
30
|
Xiao Y, Li S, Pang Z, Wan C, Li L, Yuan H, Hong X, Du W, Feng X, Li Y, Chen P, Liu BF. Multi-reagents dispensing centrifugal microfluidics for point-of-care testing. Biosens Bioelectron 2022; 206:114130. [PMID: 35245866 DOI: 10.1016/j.bios.2022.114130] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
Point-of-care testing (POCT) has shown great advantages for public health monitoring in resource-limited settings. However, developing of POCT tools with automated and accurate quantitative dispensing of multiple reagents and samples is challenging. Here, we demonstrate a novel multi-reagents dispensing centrifugal microfluidics (MDCM) that allows rapid and automated dispensing of multiple reagents and samples with high throughput and accuracy. The MDCM was designed with multiple aliquoting units with the hydrophobic valve at different radial positions. All reagents and samples were loaded simultaneously, dispensed in parallel by centrifugation at low speed, and then introduced into the reaction chamber sequentially by centrifugation at high speed. Two MDCM chips are demonstrated, including a uniform concentration generator and a gradient concentration generator. The concentration coefficient of variation (CV) among the independent reaction chambers was lower than 0.56%, and the theoretical quantitative concentration gradient was strongly correlated with the actual concentration gradient (R2 = 0.9938). We have successfully applied the MDCM to loop-mediated isothermal amplification (LAMP)-based nucleic acid detection for multiple infectious pathogens and antimicrobial susceptibility testing (AST) for kanamycin sulfate against E. coli. To further extend the applications, the MDCM has also been applied to bicinchoninic acid (BCA) protein assays with online calibration, reducing the detection time from 2 h to 10 min with a twenty-fold reduction in reagent consumption. These results indicated that the MDCM is a high potential platform for POCT.
Collapse
Affiliation(s)
- Yujin Xiao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Pang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lina Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianzhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
31
|
Nguyen VD, Nguyen HQ, Bui KH, Ko YS, Park BJ, Seo TS. A handheld-type total integrated capillary electrophoresis system for SARS-CoV-2 diagnostics: Power, fluorescence detection, and data analysis by smartphone. Biosens Bioelectron 2022; 195:113632. [PMID: 34571485 DOI: 10.1016/j.bios.2021.113632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022]
Abstract
A micro-capillary electrophoresis (μCE) system is one of the widely adopted techniques in the molecular diagnostics and DNA sequencing due to the benefits of high resolution, rapid analysis, and low reagent consumption, but due to the requirements of bulky high-power suppliers and an expensive laser-induced fluorescence detector module, the conventional set-up of μCE system is not adequate for point-of-care (POC) molecular diagnostics. In this study, we constructed a miniaturized and integrated μCE system which can be manipulated by a smartphone. The smartphone not only powers two boost converters and an excited laser, but also controls the relay for the power switch. Moreover, the complementary metal-oxide-semiconductor (CMOS) camera of the smartphone was used for detecting the fluorescence signal of amplicons amplified with reverse transcription-polymerase chain reaction (RT-PCR). We also developed a web-based application so that the raw data of the recorded fluorescence intensity versus the running time can display typical capillary electropherograms on the smartphone. The total size of the hand-held μCE system was 9.6 cm [Width] × 22 cm [Length] × 15.5 cm [Height], and the weight was ∼1 kg, which is suitable for POC DNA testing. In the integrated smartphone-associated μCE system, we could accurately analyze two genes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), namely N gene and S gene along with two bracket ladders in 6 min to identify SARS-CoV-2. Such an advanced μCE platform can be applied for a variety of on-site molecular diagnostics fields with user-friendliness.
Collapse
Affiliation(s)
- Van Dan Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea
| | - Huynh Quoc Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea
| | - Khang Hoang Bui
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea
| | - Young Soo Ko
- Department of Chemical Engineering and Department of Future Convergence Engineering, Kongju National University, Cheonan City, Chungcheongnam-do, Republic of Korea
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea
| | - Tae Seok Seo
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea.
| |
Collapse
|
32
|
Nguyen HQ, Bui HK, Phan VM, Seo TS. An internet of things-based point-of-care device for direct reverse-transcription-loop mediated isothermal amplification to identify SARS-CoV-2. Biosens Bioelectron 2022; 195:113655. [PMID: 34571479 PMCID: PMC8458107 DOI: 10.1016/j.bios.2021.113655] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
Rapid and accurate testing tools for SARS-CoV-2 detection are urgently needed to prevent the spreading of the virus and to take timely governmental actions. Internet of things (IoT)-based diagnostic devices would be an ideal platform for point-of-care (POC) screening of COVID-19 and ubiquitous healthcare monitoring for patients. Herein, we present an advanced IoT-based POC device for real-time direct reverse-transcription-loop mediated isothermal amplification assay to detect SARS-CoV-2. The diagnostic system is miniaturized (10 cm [height] × 9 cm [width] × 5.5 cm [length]) and lightweight (320 g), which can be operated with a portable battery and a smartphone. Once a liquid sample was loaded into an integrated microfluidic chip, a series of sample lysis, nucleic amplification, and real-time monitoring of the fluorescent signals of amplicons were automatically performed. Four reaction chambers were patterned on the chip, targeting As1e, N, E genes and a negative control, so multiple genes of SARS-CoV-2 could be simultaneously analyzed. The fluorescence intensities in each chamber were measured by a CMOS camera upon excitation with a 488 nm LED light source. The recorded data were processed by a microprocessor inside the IoT-based POC device and transferred and displayed on the wirelessly connected smartphone in real-time. The positive results could be obtained using three primer sets of SARS-CoV-2 with a limit of detection of 2 × 101 genome copies/μL, and the clinical sample of SARS-CoV-2 was successfully analyzed with high sensitivity and accuracy. Our platform could provide an advanced molecular diagnostic tool to test SARS-CoV-2 anytime and anywhere.
Collapse
Affiliation(s)
- Huynh Quoc Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea
| | - Hoang Khang Bui
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea
| | - Vu Minh Phan
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea
| | - Tae Seok Seo
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
33
|
Nguyen VD, Van Nguyen H, Seo JW, Lee SH, Seo TS. Prediction of acute rejection in kidney transplanted patients based on the point-of-care isothermal molecular diagnostics platform. Biosens Bioelectron 2021; 199:113877. [PMID: 34920227 DOI: 10.1016/j.bios.2021.113877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
In this study, we proposed an advanced point-of-care molecular diagnostic technology to evaluate the acute rejection (AR) in kidney transplanted patients. On the contrary to the conventional PCR method, we developed a colorimetric loop mediated isothermal amplification (LAMP) for quantitative analysis of the six biomarkers related to AR (CD3ϵ, IP-10, Tim-3-HAVCR2, CXCL9, PSMB9, C1QB) with a reference gene (18S rRNA). Using urinary cDNA samples of transplanted patients, it turned out that three biomarkers among six, namely IP-10, Tim-3-HAVCR2 and C1QB, have significant discrepancy in quantity between the stable graft (STA) patient and the AR patient. The AR prediction model using these three biomarkers was established, which could estimate the immune-rejection in the patients with 93.3% of accuracy. For the point-of-care (POC) molecular diagnostics for the AR evaluation, we constructed a centrifugal microfluidic platform, in which the RNA extraction from the clinical urinary samples, the quantitative reverse-transcription (RT)-LAMP reaction, and the data analysis based on the AR prediction model could be performed in a serial order. Ten blind clinical samples were analyzed on the POC genetic analyzer, showing 100% match with the validated qPCR data. Thus, the proposed advanced molecular diagnostic platform enables us to perform the timely treatment for the transplanted patients who are suffering from the allograft failure and side effects such as infection and malignancy.
Collapse
Affiliation(s)
- Van Dan Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, South Korea
| | - Hau Van Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, South Korea
| | - Jung Woo Seo
- Core Research Laboratory, Medical Science Institute, Kyung Hee University Hospital at Gangdong, Seoul, 05278, South Korea
| | - Sang Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, 02447, South Korea
| | - Tae Seok Seo
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, South Korea.
| |
Collapse
|
34
|
Chu H, Liu C, Liu J, Yang J, Li Y, Zhang X. Recent advances and challenges of biosensing in point-of-care molecular diagnosis. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 348:130708. [PMID: 34511726 PMCID: PMC8424413 DOI: 10.1016/j.snb.2021.130708] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 05/07/2023]
Abstract
Molecular diagnosis, which plays a major role in infectious disease screening with successful understanding of the human genome, has attracted more attention because of the outbreak of COVID-19 recently. Since point-of-care testing (POCT) can expand the application of molecular diagnosis with the benefit of rapid reply, low cost, and working in decentralized environments, many researchers and commercial institutions have dedicated tremendous effort and enthusiasm to POCT-based biosensing for molecular diagnosis. In this review, we firstly summarize the state-of-the-art techniques and the construction of biosensing systems for POC molecular diagnosis. Then, the application scenarios of POCT-based biosensing for molecular diagnosis were also reviewed. Finally, several challenges and perspectives of POC biosensing for molecular diagnosis are discussed. This review is expected to help researchers deepen comprehension and make progresses in POCT-based biosensing field for molecular diagnosis applications.
Collapse
Affiliation(s)
- Hongwei Chu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jinsen Liu
- Shenzhen ENCO Instrument Co., Ltd, Shenzhen 518000, China
| | - Jiao Yang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yingchun Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
35
|
|
36
|
Hayden A, Kuentzel M, Chittur SV. Rapid, Affordable, and Scalable SARS-CoV-2 Detection From Saliva. J Biomol Tech 2021; 32:148-157. [PMID: 35027872 DOI: 10.7171/jbt.21-3203-010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here we present an inexpensive, rapid, and robust reverse-transcription loop-mediated isothermal amplification (RT-LAMP)-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection method that is easily scalable, enabling point-of-care facilities and clinical labs to determine results from patients' saliva directly in 30 minutes for less than $2 per reaction. The method uses a novel combination of widely available reagents that can be prepared in bulk, plated, and frozen and remain stable until samples are received. This innovation dramatically reduces preparation time, enabling high-throughput automation and testing with time to results (including setup) in less than 1 hour for 96 patient samples simultaneously when using a 384-well format. By using a dual reporter (phenol red pH indicator for end-point detection and SYTO-9 fluorescent dye for real time), the assay also provides internal validation of results and redundancy in the event of an instrument malfunction.
Collapse
Affiliation(s)
- Andrew Hayden
- Center for Functional Genomics, University at Albany, Rensselaer, New York, USA
| | - Marcy Kuentzel
- Center for Functional Genomics, University at Albany, Rensselaer, New York, USA
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany, Rensselaer, New York, USA.,Department of Biomedical Sciences, School of Public Health, University at Albany, Rensselaer, New York, USA
| |
Collapse
|
37
|
Paul R, Ostermann E, Chen Y, Saville AC, Yang Y, Gu Z, Whitfield AE, Ristaino JB, Wei Q. Integrated microneedle-smartphone nucleic acid amplification platform for in-field diagnosis of plant diseases. Biosens Bioelectron 2021; 187:113312. [PMID: 34004545 DOI: 10.1016/j.bios.2021.113312] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 01/09/2023]
Abstract
We demonstrate an integrated microneedle (MN)-smartphone nucleic acid amplification platform for "sample-to-answer" diagnosis of multiplexed plant pathogens within 30 min. This portable system consists of a polymeric MN patch for rapid nucleic acid extraction within a minute and a 3D-printed smartphone imaging device for loop-mediated isothermal amplification (LAMP) reaction and detection. We expanded the extraction of the MN technology for DNA targets as in the previous study (ACS Nano, 2019, 13, 6540-6549) to more fragile RNA biomarkers, evaluated the storability of the extracted nucleic acid samples on MN surfaces, and developed a smartphone-based LAMP amplification and fluorescent reader device that can quantify four LAMP reactions on the same chip. In addition, we have found that the MN patch containing as few as a single needle tip successfully extracted enough RNA for RT-PCR or RT-LAMP analysis. Moreover, MN-extracted RNA samples remained stable on MN surfaces for up to three days. The MN-smartphone platform has been used to detect both Phytophthora infestans DNA and tomato spotted wilt virus (TSWV) RNA down to 1 pg, comparable to the results from a benchtop thermal cycler. Finally, multiplexed detection of P. infestans and TSWV through a single extraction from infected tomato leaves and amplification on the smartphone without benchtop equipment was demonstrated.
Collapse
Affiliation(s)
- Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27696, USA
| | - Emily Ostermann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27696, USA
| | - Yuting Chen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Amanda C Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yuming Yang
- Department of Agrotechnology and Food Sciences, Wageningen University, 6708, PB, Wageningen, Netherlands
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Laboratory of Systems and Precision Medicine, Zhejiang University Medical Cencter, Hangzhou, Zhejing, 310058, China; Deparment of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA; Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, 27696, USA
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA; Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, 27696, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27696, USA; Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, 27696, USA.
| |
Collapse
|
38
|
Loop-mediated isothermal amplification (LAMP) assay targeting RLEP for detection of Mycobacterium leprae in leprosy patients. Int J Infect Dis 2021; 107:145-152. [PMID: 33864913 DOI: 10.1016/j.ijid.2021.04.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Leprosy is a chronic infectious disease caused by Mycobacterium leprae and it remains a significant health problem in several parts of the world. Early and accurate diagnosis of this disease is therefore essential. Previously published loop-mediated isothermal amplification (LAMP) protocols for detecting mycobacterial species used conventional primers targeting the 16S rRNA, gyrB and insertion sequence genes. METHODS In this study, we conducted a LAMP assay for leprosy and compared it with quantitative polymerase chain reaction (q-PCR) and conventional PCR assays to determine the efficiency, sensitivity and specificity of each technique. We chose conserved sequence RLEP as a suitable molecular target for assays. RESULTS The LAMP assay provided rapid and accurate results, confirming leprosy in 91/110 clinical skin tissue samples from leprosy patients and amplifying the target pathogen in <60 min at 65 °C. The assay was more sensitive than conventional PCR and more straightforward and faster than the q-PCR assay. CONCLUSIONS The LAMP assay has the potential for developing quicker, more accessible visual methods for the detection of M. leprae, which will enable early diagnosis and treatment and prevent further infection in endemic areas.
Collapse
|