1
|
Prieto Otoya TD, McQuaid KT, Paterson NG, Cardin DJ, Kellett A, Cardin CJ. Re-pairing DNA: binding of a ruthenium phi complex to a double mismatch. Chem Sci 2024; 15:9096-9103. [PMID: 38903237 PMCID: PMC11186304 DOI: 10.1039/d4sc01448k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/11/2024] [Indexed: 06/22/2024] Open
Abstract
We report a crystal structure at atomic resolution (0.9 Å) of a ruthenium complex bound to a consecutive DNA double mismatch, which results in a TA basepair with flipped out thymine, together with the formation of an adenine bulge. The structure shows a form of metalloinsertion interaction of the Λ-[Ru(phen)2phi]2+ (phi = 9,10-phenanthrenediimine) complex at the bulge site. The metal complex interacts with the DNA via the major groove, where specific interactions between the adenines of the DNA and the phen ligands of the complex are formed. One Δ-[Ru(phen)2phi]2+ complex interacts via the minor groove, which shows sandwiching of its phi ligand between the phi ligands of the other two ruthenium complexes, and no interaction of its phen ligands with DNA. To our knowledge, this binding model represents a new form of metalloinsertion in showing major rather than minor groove insertion.
Collapse
Affiliation(s)
| | - Kane T McQuaid
- Department of Chemistry, University of Reading Whiteknights Reading, RG6 6AD UK
| | - Neil G Paterson
- Diamond Light Source Ltd Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - David J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading, RG6 6AD UK
| | - Andrew Kellett
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin Dublin 9 Ireland
| | - Christine J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading, RG6 6AD UK
| |
Collapse
|
2
|
Abirami A, Devan U, Ramesh R, Antony Joseph Velanganni A, Małecki JG. Exploring the cytotoxicity of dinuclear Ru(II) p-cymene complexes appended N, N'-bis(4-substituted benzoyl)hydrazines: insights into the mechanism of apoptotic cell death. Dalton Trans 2024; 53:5167-5179. [PMID: 38380977 DOI: 10.1039/d3dt04234k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Cancer is a perilous life-threatening disease, and attempts are constantly being made to create multinuclear transition metal complexes that could lead to the development of potential anticancer medications and administration procedures. Hence, this work aims to design, synthesize, characterize, and assess the anticancer efficacy of ruthenium p-cymene complexes incorporating N,N'-bis(4-substituted benzoyl)hydrazine ligands. The formation of the new complexes (Ru2H1-Ru2H3) has been thoroughly established by elemental analysis, and FT-IR, UV-vis, NMR, and HR-MS spectral techniques. The solid-state molecular structures of the complexes Ru2H1 and Ru2H3 have been determined using the SC-XRD study, which confirms the N, O, and Cl-legged piano stool pseudo-octahedral geometry of each ruthenium(II) ion. The stability of these complexes in the solution state and their lipophilicity profile have been determined. Furthermore, the title complexes were tested for their in vitro anticancer activity against cancerous H460 (lung cancer cells), SkBr3 (breast cancer cells), HepG2 (liver cancer cells), and HeLa (cervical cancer cells) along with non-cancerous (HEK-293) cells. The IC50 results revealed that complex Ru2H3 exhibits potent activity against the proliferation of all four cancer cells and outscored the effect of the standard metallodrug cisplatin. This may be attributed to the presence of a couple of lipophilic electron-donating methoxy groups in the ligand scaffold and also the ruthenium(II) p-cymene motifs. Advantageously, all the complexes (Ru2H1-Ru2H3) displayed cytotoxic specificity only towards cancerous cells by leaving the off-target non-cancerous cells undamaged. Acridine orange/ethidium bromide (AO/EB) staining, Hoechst 33342, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) staining assays were used to investigate the apoptotic pathway and ROS levels in mitochondria. The results of western blot analysis confirmed that the complexes triggered apoptosis through an intrinsic mitochondrial pathway by upregulating Bax and downregulating Bcl-2 proteins. Finally, the extent of apoptosis triggered by the complex Ru2H3 was quantified with the aid of flow cytometry using the Annexin V-FITC/propidium iodide (PI) double-staining technique.
Collapse
Affiliation(s)
- Arunachalam Abirami
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Umapathy Devan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Arockiam Antony Joseph Velanganni
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Jan Grzegorz Małecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, Katowice, Poland
| |
Collapse
|
3
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
4
|
Ruthenium(II)-Cyclopentadienyl-Derived Complexes as New Emerging Anti-Colorectal Cancer Drugs. Pharmaceutics 2022; 14:pharmaceutics14061293. [PMID: 35745864 PMCID: PMC9228117 DOI: 10.3390/pharmaceutics14061293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and one of the leading causes of cancer-related death worldwide, urging the need for new and more efficient therapeutic approaches. Ruthenium complexes have emerged as attractive alternatives to traditional platinum-based compounds in the treatment of CRC. This work aims to evaluate anti-CRC properties, as well as to identify the mechanisms of action of ruthenium complexes with the general formula [Ru(η5-C5H4R)(PPh3)(4,4′-R′-2,2′-bipyridine)][CF3SO3], where R = CH3, CHO or CH2OH and R′ = H, CH3, CH2OH, or dibiotin ester. The complexes (Ru 1–7) displayed high bioactivity, as shown by low IC50 concentrations against CRC cells, namely, RKO and SW480. Four of the most promising ruthenium complexes (Ru 2, 5–7) were phenotypically characterized and were shown to inhibit cell viability by decreasing cell proliferation, inducing cell cycle arrest, and increasing apoptosis. These findings were in accordance with the inhibition of MEK/ERK and PI3K/AKT signaling pathways. Ruthenium complexes also led to a decrease in cellular clonogenic ability and cell migration, which was associated with the disruption of F-actin cytoskeleton integrity. Here, we demonstrated that ruthenium complexes, especially Ru7, have a high anticancer effect against CRC cells and are promising drugs to be used as a new therapeutical strategy for CRC treatment.
Collapse
|
5
|
Hildebrandt J, Häfner N, Kritsch D, Görls H, Dürst M, Runnebaum IB, Weigand W. Highly Cytotoxic Osmium(II) Compounds and Their Ruthenium(II) Analogues Targeting Ovarian Carcinoma Cell Lines and Evading Cisplatin Resistance Mechanisms. Int J Mol Sci 2022; 23:ijms23094976. [PMID: 35563367 PMCID: PMC9102668 DOI: 10.3390/ijms23094976] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Ruthenium and osmium complexes attract increasing interest as next generation anticancer drugs. Focusing on structure-activity-relationships of this class of compounds, we report on 17 different ruthenium(II) complexes and four promising osmium(II) analogues with cinnamic acid derivatives as O,S bidentate ligands. The aim of this study was to determine the anticancer activity and the ability to evade platin resistance mechanisms for these compounds. (2) Methods: Structural characterizations and stability determinations have been carried out with standard techniques, including NMR spectroscopy and X-ray crystallography. All complexes and single ligands have been tested for cytotoxic activity on two ovarian cancer cell lines (A2780, SKOV3) and their cisplatin-resistant isogenic cell cultures, a lung carcinoma cell line (A549) as well as selected compounds on three non-cancerous cell cultures in vitro. FACS analyses and histone γH2AX staining were carried out for cell cycle distribution and cell death or DNA damage analyses, respectively. (3) Results: IC50 values show promising results, specifically a high cancer selective cytotoxicity and evasion of resistance mechanisms for Ru(II) and Os(II) compounds. Histone γH2AX foci and FACS experiments validated the high cytotoxicity but revealed diminished DNA damage-inducing activity and an absence of cell cycle disturbance thus pointing to another mode of action. (4) Conclusion: Ru(II) and Os(II) compounds with O,S-bidentate ligands show high cytotoxicity without strong effects on DNA damage and cell cycle, and this seems to be the basis to circumvent resistance mechanisms and for the high cancer cell specificity.
Collapse
Affiliation(s)
- Jana Hildebrandt
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Norman Häfner
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Daniel Kritsch
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Ingo B. Runnebaum
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
- Correspondence: (I.B.R.); (W.W.); Tel.: +49-3641-9329101 (I.B.R.); +49-3641-948160 (W.W.)
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
- Correspondence: (I.B.R.); (W.W.); Tel.: +49-3641-9329101 (I.B.R.); +49-3641-948160 (W.W.)
| |
Collapse
|
6
|
Kilincarslan SD, Sahin C, Mutlu D, Nasirli F, Arslan S, Dogan NM. Synthesis, Characterization, Antibiofilm and Anticancer Activity of New Ruthenium Complexes with 2,2'-Bipyridine-4,4'-Dicarboxamide. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220329164106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
New ruthenium complexes bearing bipyridine ligands with different substituents (propyl, hexyl, isobutyl, and benzyl) were synthesized and characterized by MS, NMR, FTIR, and UV/Visible spectroscopy. Moreover, their cytotoxic, anti-carcinogenic, and anti-biofilm activities were evaluated. The electrochemical properties of the complexes have been investigated by cyclic voltammetry. The HOMO and LUMO energy levels of RuL1-RuL4 were found as (-5.45 eV)-(-5.46 eV) and (-2.98 eV)-(-3.01 eV), respectively. Cytotoxic activities of ruthenium complexes were investigated in Caco-2, HepG2, and HEK293 cells. It was found that RuL3 showed a cytotoxic effect on cancer cells without affecting non-cancerous cells at applied doses. The presence of the benzyl group may increase the cytotoxic effect of RuL3 compared to other derivatives that contain the alkyl group. The apoptotic effect of the RuL3 derivative was determined by using Arthur image-based cytometer. It found that RuL3 was induced apoptosis in Caco-2 (5-fold) and HepG2 (2-fold) cancer cells, respectively. All ruthenium complexes inhibited Staphylococcus aureus ATCC 29213 biofilm, but RuL3 had a more pronounced effect. Moreover, RuL3 had biofilm inhibition and biofilm degradation effect while RuL1 and RuL4 demonstrated only biofilm inhibition. The fluorescent microscopy analysis confirmed the antibiofilm effect of ruthenium complexes. All of these results clearly showed that RuL3 showed cytotoxic and apoptotic effects on cancer cells.
Collapse
Affiliation(s)
| | - Cigdem Sahin
- Department of Chemistry, Art&Science Faculty, Pamukkale University, Denizli, Turkey
| | - Dogukan Mutlu
- Department of Biology, Art&Science Faculty, Pamukkale University, Denizli, Turkey
| | - Farid Nasirli
- Department of Biology, Art&Science Faculty, Pamukkale University, Denizli, Turkey
| | - Sevki Arslan
- Department of Biology, Art&Science Faculty, Pamukkale University, Denizli, Turkey
| | - Nazime Mercan Dogan
- Department of Biology, Art&Science Faculty, Pamukkale University, Denizli, Turkey
| |
Collapse
|
7
|
Nešić MD, Dučić T, Algarra M, Popović I, Stepić M, Gonçalves M, Petković M. Lipid Status of A2780 Ovarian Cancer Cells after Treatment with Ruthenium Complex Modified with Carbon Dot Nanocarriers: A Multimodal SR-FTIR Spectroscopy and MALDI TOF Mass Spectrometry Study. Cancers (Basel) 2022; 14:cancers14051182. [PMID: 35267490 PMCID: PMC8909423 DOI: 10.3390/cancers14051182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Developing new anticancer medicaments is focused on inducing controlled elimination of tumor tissue without severe side effects. It is essential to enable the medicament to reach the target molecule without provoking the immune response too early. The first cellular changes might occur already at the level of the cell membrane, composed mainly of lipids. Therefore, we used spectroscopic techniques to study the interaction of potential metallodrug [Ru(η5-C5H5)(PPh3)2CN] (RuCN) with lipids of A2780 ovarian cancer cells and investigated if these changes are affected by the presence of drug carriers (carbon dots (CDs) and nitrogen-doped carbon dots (N-CDs)). Our results showed that CDs and N-CDs prevent lysis and moderate oxidative stress of lipids caused by metallodrug, still keeping the antitumor activity and potential to penetrate through the lipid bilayer. Therefore, Ru drug loading to carriers balances the anticancer efficiency and leads to better anticancer outcomes by reducing the oxidative stress that has been linked to cancer progression. Abstract In the last decade, targeting membrane lipids in cancer cells has been a promising approach that deserves attention in the field of anticancer drug development. To get a comprehensive understanding of the effect of the drug [Ru(η5-Cp)(PPh3)2CN] (RuCN) on cell lipidic components, we combine complementary analytical approaches, matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI TOF MS) and synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy. Techniques are used for screening the effect of potential metallodrug, RuCN, without and with drug carriers (carbon dots (CDs) and nitrogen-doped carbon dots (N-CDs)) on the lipids of the human ovarian cancer cell line A2780. MALDI TOF MS results revealed that the lysis of ovarian cancer membrane lipids is promoted by RuCN and not by drug carriers (CDs and N-CDs). Furthermore, SR-FTIR results strongly suggested that the phospholipids of cancer cells undergo oxidative stress after the treatment with RuCN that was accompanied by the disordering of the fatty acid chains. On the other hand, using (N-)CDs as RuCN nanocarriers prevented the oxidative stress caused by RuCN but did not prevent the disordering of the fatty acid chain packing. Finally, we demonstrated that RuCN and RuCN/(N-)CDs alter the hydration of the membrane surface in the membrane–water interface region.
Collapse
Affiliation(s)
- Maja D. Nešić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.P.); (M.S.); (M.P.)
- Correspondence: (M.D.N.); (M.A.); Tel.: +381-113408770 (M.D.N.)
| | - Tanja Dučić
- ALBA-CELLS Synchrotron, MIRAS Beamline, 08290 Cerdanyola del Vallès, Spain;
| | - Manuel Algarra
- INAMAT2—Institute for Advanced Materials and Mathematics, Department of Science, Public University of Navarre, Campus de Arrosadia, 31006 Pamplona, Spain
- Correspondence: (M.D.N.); (M.A.); Tel.: +381-113408770 (M.D.N.)
| | - Iva Popović
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.P.); (M.S.); (M.P.)
| | - Milutin Stepić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.P.); (M.S.); (M.P.)
| | - Mara Gonçalves
- CQM—Centro de Química da Madeira, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Marijana Petković
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.P.); (M.S.); (M.P.)
| |
Collapse
|
8
|
|
9
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Ruthenium Complexes as Promising Candidates against Lung Cancer. Molecules 2021; 26:molecules26154389. [PMID: 34361543 PMCID: PMC8348655 DOI: 10.3390/molecules26154389] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Lung cancer is one of the most common malignancies with the highest mortality rate and the second-highest incidence rate after breast cancer, posing a serious threat to human health. The accidental discovery of the antitumor properties of cisplatin in the early 1960s aroused a growing interest in metal-based compounds for cancer treatment. However, the clinical application of cisplatin is limited by serious side effects and drug resistance. Therefore, other transition metal complexes have been developed for the treatment of different malignant cancers. Among them, Ru(II/III)-based complexes have emerged as promising anticancer drug candidates due to their potential anticancer properties and selective cytotoxic activity. In this review, we summarized the latest developments of Ru(II/III) complexes against lung cancer, focusing mainly on the mechanisms of their biological activities, including induction of apoptosis, necroptosis, autophagy, cell cycle arrest, inhibition of cell proliferation, and invasion and metastasis of lung cancer cells.
Collapse
|
11
|
Dorairaj DP, Lin YF, Haribabu J, Murugan T, Narwane M, Karvembu R, Neelakantan MA, Kao CL, Chiu CC, Hsu SCN. Binding mode transformation and biological activity on the Ru(II)-DMSO complexes bearing heterocyclic pyrazolyl ligands. J Inorg Biochem 2021; 223:111545. [PMID: 34303108 DOI: 10.1016/j.jinorgbio.2021.111545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Three Ru(II)-DMSO complexes (1-3) containing 2-(3-pyrazolyl)pyridine (PzPy), 2-pyrazol-3-ylfuran (PzO), or 2-pyrazol-3-ylthiophene (PzS) ligand, were synthesized and characterized. The monodentate coordination of the heterocyclic pyrazolyl ligand (PzPy) with Ru(II) ion via N atom was confirmed by single crystal X-ray diffraction. Complex 1 could be converted to the known η2-bidentate PzPy complex cis(Cl), cis(S)-[RuCl2(PzPy)(DMSO)2] (4) under reflux conditions. The mechanism underlying binding mode transformation was studied by 1H NMR spectroscopy and density functional theory (DFT) calculations. The binding abilities of the complexes (1-4) with calf-thymus (CT) DNA and bovine serum albumin (BSA) were investigated using spectroscopic and molecular docking techniques. Among the four Ru(II) complexes, complexes 1 and 3 inhibited the long-term proliferation of human breast cancer cells, whereas complexes 2 and 4 did not inhibit their proliferation to a considerable extent. Interestingly, complexes 1 and 3 did not induce significant cell death but rather attenuated the clonogenicity of breast cancer cells by upregulating reactive oxygen species (ROS), endoplasmic reticulum (ER) and autophagic stress.
Collapse
Affiliation(s)
- Dorothy Priyanka Dorairaj
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Ya-Fan Lin
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jebiti Haribabu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Theetharappan Murugan
- Chemistry Research Centre, National Engineering College, K.R. Nagar, Kovilpatti, 628503 Thoothukudi District, Tamilnadu, India
| | - Manmath Narwane
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | | | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Chih Chiu
- Department of Medical Research, Kaohsiung Medical University Hospital, Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
12
|
De Grandis RA, Oliveira KM, Guedes APM, dos Santos PWS, Aissa AF, Batista AA, Pavan FR. A Novel Ruthenium(II) Complex With Lapachol Induces G2/M Phase Arrest Through Aurora-B Kinase Down-Regulation and ROS-Mediated Apoptosis in Human Prostate Adenocarcinoma Cells. Front Oncol 2021; 11:682968. [PMID: 34249731 PMCID: PMC8264259 DOI: 10.3389/fonc.2021.682968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Lapachol is a well-studied natural product that has been receiving great interest due to its anticancer properties that target oxidative stress. In the present work, two novel lapachol-containing ruthenium(II) complexes [Ru(Lap)(dppm)(bipy)]PF6 (1) and [Ru(Lap)(dppm)(phen)]PF6 (2) [Lap = lapachol, dppm = 1,1'-bis(diphosphino)methane, bipy = 2,2'-bipyridine, phen = 1,10-phenantroline] were synthesized, fully characterized, and investigated for their cellular and molecular responses on cancer cell lines. We found that both complexes exhibited a potent cytotoxic effect in a panel of cancer cell lines in monolayer cultures, as well as in a 3D model of multicellular spheroids formed from DU-145 human prostate adenocarcinoma cells. Furthermore, the complex (2) suppressed the colony formation, induced G2/M-phase arrest, and downregulated Aurora-B. The mechanism studies suggest that complex (2) stimulate the overproduction of reactive oxygen species (ROS) and triggers caspase-dependent apoptosis as a result of changes in expression of several genes related to cell proliferation and caspase-3 and -9 activation. Interestingly, we found that N-acetyl-L-cysteine, a ROS scavenger, suppressed the generation of intracellular ROS induced by complex (2), and decreased its cytotoxicity, indicating that ROS-mediated DNA damage leads the DU-145 cells into apoptosis. Overall, we highlighted that coordination of lapachol to phosphinic ruthenium(II) compounds considerably improves the antiproliferative activities of resulting complexes granting attractive selectivity to human prostate adenocarcinoma cells. The DNA damage response to ROS seems to be involved in the induction of caspase-mediated cell death that plays an important role in the complexes' cytotoxicity. Upon further investigations, this novel class of lapachol-containing ruthenium(II) complexes might indicate promising chemotherapeutic agents for prostate cancer therapy.
Collapse
Affiliation(s)
- Rone A. De Grandis
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
- School of Medicine, University of Araraquara, Araraquara, Brazil
| | - Katia M. Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Alexandre F. Aissa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Alzir A. Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Fernando R. Pavan
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
13
|
Lenis-Rojas OA, Cabral R, Carvalho B, Friães S, Roma-Rodrigues C, Fernández JAA, Vila SF, Sanchez L, Gomes CSB, Fernandes AR, Royo B. Triazole-Based Half-Sandwich Ruthenium(II) Compounds: From In Vitro Antiproliferative Potential to In Vivo Toxicity Evaluation. Inorg Chem 2021; 60:8011-8026. [PMID: 33973771 DOI: 10.1021/acs.inorgchem.1c00527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new series of half-sandwich ruthenium(II) compounds [(η6-arene)Ru(L)Cl][CF3SO3] bearing 1,2,3-triazole ligands (arene = p-cymene, L = L1 (1); arene = p-cymene, L = L2 (2); arene = benzene, L = L1 (3); arene = benzene, L2 (4); L1 = 2-[1-(p-tolyl)-1H-1,2,3-triazol-4-yl]pyridine and L2 = 1,1'-di-p-tolyl-1H,1'H-4,4'-bi(1,2,3-triazole) have been synthesized and fully characterized by 1H and 13C NMR and IR spectroscopy, mass spectrometry, and elemental analysis. The molecular structures of 1, 2, and 4 have been determined by single-crystal X-ray diffraction. The cytotoxic activity of 1-4 was evaluated using the MTS assay against human tumor cells, namely ovarian carcinoma (A2780), colorectal carcinoma (HCT116), and colorectal carcinoma resistant to doxorubicin (HCT116dox), and against normal primary fibroblasts. Whereas compounds 2 and 4 showed no cytotoxic activity toward tumor cell lines, compounds 1 and 3 were active in A2780, while showing no antiproliferative effect in human normal dermal fibroblasts at the IC50 concentrations of the A2780 cell line. Exposure of ovarian carcinoma cells to IC50 concentrations of compound 1 or 3 led to an accumulation of reactive oxygen species and an increase of apoptotic and autophagic cells. While compound 3 displayed low levels of angiogenesis induction, compound 1 showed an ability to induce cell cycle delay and to interfere with cell migration. When the in vivo toxicity studies using zebrafish and chicken embryos are considered, compounds 1 and 3, which were not lethal, are promising candidates as anticancer agents against ovarian cancer due to their good cytotoxic activity in tumor cells and their low toxicity both in vitro and in vivo.
Collapse
Affiliation(s)
- Oscar A Lenis-Rojas
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rui Cabral
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Beatriz Carvalho
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Sofia Friães
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Jhonathan A A Fernández
- Laboratory of Zebrafish, Department of Medical Genetics and Genomic Medicine- School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Sao Paulo, Brazil.,Departamento de Zoología Genética y Antropología Física, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain
| | - Sabela F Vila
- Departamento de Zoología Genética y Antropología Física, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain
| | - Laura Sanchez
- Departamento de Zoología Genética y Antropología Física, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.,Preclinical Animal Models Group. Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, A Coruña, Spain
| | - Clara S B Gomes
- LAQV-REQUIMTE UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Beatriz Royo
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|