2
|
Singh H, Seruggia D, Madha S, Saxena M, Nagaraja AK, Wu Z, Zhou J, Huebner AJ, Maglieri A, Wezenbeek J, Hochedlinger K, Orkin SH, Bass AJ, Hornick JL, Shivdasani RA. Transcription factor-mediated intestinal metaplasia and the role of a shadow enhancer. Genes Dev 2021; 36:38-52. [PMID: 34969824 PMCID: PMC8763054 DOI: 10.1101/gad.348983.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022]
Abstract
Here, Singh et al. show extensive but selective recruitment of intestinal enhancers by CDX2 in gastric cells and that HNF4A-mediated ectopic CDX2 expression in the stomach occurs through a conserved shadow cis-element. These findings identify mechanisms for TF-driven intestinal metaplasia and a likely pathogenic TF hierarchy. Barrett's esophagus (BE) and gastric intestinal metaplasia are related premalignant conditions in which areas of human stomach epithelium express mixed gastric and intestinal features. Intestinal transcription factors (TFs) are expressed in both conditions, with unclear causal roles and cis-regulatory mechanisms. Ectopic CDX2 reprogrammed isogenic mouse stomach organoid lines to a hybrid stomach–intestinal state transcriptionally similar to clinical metaplasia; squamous esophageal organoids resisted this CDX2-mediated effect. Reprogramming was associated with induced activity at thousands of previously inaccessible intestine-restricted enhancers, where CDX2 occupied DNA directly. HNF4A, a TF recently implicated in BE pathogenesis, induced weaker intestinalization by binding a novel shadow Cdx2 enhancer and hence activating Cdx2 expression. CRISPR/Cas9-mediated germline deletion of that cis-element demonstrated its requirement in Cdx2 induction and in the resulting activation of intestinal genes in stomach cells. dCas9-conjugated KRAB repression mapped this activity to the shadow enhancer's HNF4A binding site. Altogether, we show extensive but selective recruitment of intestinal enhancers by CDX2 in gastric cells and that HNF4A-mediated ectopic CDX2 expression in the stomach occurs through a conserved shadow cis-element. These findings identify mechanisms for TF-driven intestinal metaplasia and a likely pathogenic TF hierarchy.
Collapse
Affiliation(s)
- Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Davide Seruggia
- Division of Hematology Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Shariq Madha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Madhurima Saxena
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ankur K Nagaraja
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zhong Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Jin Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Aaron J Huebner
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
| | - Adrianna Maglieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Juliette Wezenbeek
- Hubretch Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht 3584 CT, Netherlands
| | - Konrad Hochedlinger
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Stuart H Orkin
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Hematology Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02215, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jason L Hornick
- Departments of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
3
|
Fernández A, Hayashi M, Garrido G, Montero A, Guardia A, Suzuki T, Montoliu L. Genetics of non-syndromic and syndromic oculocutaneous albinism in human and mouse. Pigment Cell Melanoma Res 2021; 34:786-799. [PMID: 33960688 DOI: 10.1111/pcmr.12982] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
Oculocutaneous albinism (OCA) is the most frequent presentation of albinism, a heterogeneous rare genetic condition generally associated with variable alterations in pigmentation and with a profound visual impairment. There are non-syndromic and syndromic types of OCA, depending on whether the gene product affected impairs essentially the function of melanosomes or, in addition, that of other lysosome-related organelles (LROs), respectively. Syndromic OCA can be more severe and associated with additional systemic consequences, beyond pigmentation and vision alterations. In addition to OCA, albinism can also be presented without obvious skin and hair pigmentation alterations, in ocular albinism (OA), and a related genetic condition known as foveal hypoplasia, optic nerve decussation defects, and anterior segment dysgenesis (FHONDA). In this review, we will focus only in the genetics of skin pigmentation in OCA, both in human and mouse, updating our current knowledge on this subject.
Collapse
Affiliation(s)
- Almudena Fernández
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Masahiro Hayashi
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Gema Garrido
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Andrea Montero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Ana Guardia
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.,CIBERER-ISCIII, Madrid, Spain
| |
Collapse
|