1
|
Hung HS, Shen CC, Wu JT, Yueh CY, Yang MY, Yang YC, Cheng WY. Assessment of the Biocompatibility Ability and Differentiation Capacity of Mesenchymal Stem Cells on Biopolymer/Gold Nanocomposites. Int J Mol Sci 2024; 25:7241. [PMID: 39000351 PMCID: PMC11242884 DOI: 10.3390/ijms25137241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
This study assessed the biocompatibility of two types of nanogold composites: fibronectin-gold (FN-Au) and collagen-gold (Col-Au). It consisted of three main parts: surface characterization, in vitro biocompatibility assessments, and animal models. To determine the structural and functional differences between the materials used in this study, atomic force microscopy, Fourier-transform infrared spectroscopy, and ultraviolet-visible spectrophotometry were used to investigate their surface topography and functional groups. The F-actin staining, proliferation, migration, reactive oxygen species generation, platelet activation, and monocyte activation of mesenchymal stem cells (MSCs) cultured on the FN-Au and Col-Au nanocomposites were investigated to determine their biological and cellular behaviors. Additionally, animal biocompatibility experiments measured capsule formation and collagen deposition in female Sprague-Dawley rats. The results showed that MSCs responded better on the FN-Au and Col-AU nanocomposites than on the control (tissue culture polystyrene) or pure substances, attributed to their incorporation of an optimal Au concentration (12.2 ppm), which induced significant surface morphological changes, nano topography cues, and better biocompatibility. Moreover, neuronal, endothelial, bone, and adipose tissues demonstrated better differentiation ability on the FN-Au and Col-Au nanocomposites. Nanocomposites have a crucial role in tissue engineering and even vascular grafts. Finally, MSCs were demonstrated to effectively enhance the stability of the endothelial structure, indicating that they can be applied as promising alternatives to clinics in the future.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404328, Taiwan
- Translational Medicine Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chiung-Chyi Shen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan
| | - Jyun-Ting Wu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404328, Taiwan
| | - Chun-Yu Yueh
- School of Medicine, China Medical University, Taichung 404333, Taiwan
| | - Meng-Yin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan
| | - Yi-Chin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan
| | - Wen-Yu Cheng
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Taiwan Department of Physical Therapy, Hung Kuang University, Taichung 433304, Taiwan
| |
Collapse
|
2
|
Alnaanah SA, Mendes SB. Investigating the influence of solvent type and pH on protein adsorption onto silica surface by evanescent-wave cavity ring-down spectroscopy. ANAL SCI 2024; 40:1089-1099. [PMID: 38512454 DOI: 10.1007/s44211-024-00529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024]
Abstract
Several studies have explored the adsorption of various proteins onto solid-liquid interfaces, revealing the crucial role of buffer solutions in biological processes. However, a comprehensive evaluation of the buffer's influence on protein absorption onto fused silica is still lacking. This study employs evanescent-wave cavity ring-down spectroscopy (EW-CRDS) to assess the influence of buffer solutions and pH on the adsorption kinetics of three globular proteins: hemoglobin (Hb), myoglobin (Mb), and cytochrome c (Cyt-C) onto fused silica. The EW-CRDS tool, with a ring-down time of 1.4 μ s and a minimum detectable absorbance of 1 × 10 - 6 , enabled precise optical measurements at solid-liquid interfaces. The three heme proteins' adsorption behavior was investigated at pH 7 in three different solvents: deionized (DI) water, tris(hydroxymethyl)-aminomethane hydrochloride (Tris-HCl), and phosphate buffered saline (PBS). For each protein, the surface coverage, the adsorption and desorption constants, and the surface equilibrium constant were optically measured by our EW-CRDS tool. Depending on the nature of each solvent, the proteins showed a completely different adsorption trend on the silica surface. The adsorption of Mb on the silica surface was depressed in the presence of both Tris-HCl and PBS buffers compared with unbuffered (DI water) solutions. In contrast, Cyt-C adsorption appears to be relatively unaffected by the choice of buffer, as it involves strong electrostatic interactions with the surface. Notably, Hb exhibits an opposite trend, with enhanced protein adsorption in the presence of Tris-HCl and PBS buffer. The pH investigations demonstrated that the electrostatic interactions between the proteins and the surface had a major influence on protein adsorption on the silica surface, with adsorption being greatest when the pH values were around the protein's isoelectric point. This study demonstrated the ability of the highly sensitive EW-CRDS tool to study the adsorption events of the evanescent-field-confined protein species in real-time at low surface coverages with fast resolution, making it a valuable tool for studying biomolecule kinetics at solid-liquid interfaces.
Collapse
Affiliation(s)
- Shadi A Alnaanah
- Department of Physics and Astronomy, University of Louisville, Louisville, KY, 40208, USA.
- Department of Applied Physics, Tafila Technical University, Al-Eis, Tafila, 66110, Jordan.
| | - Sergio B Mendes
- Department of Physics and Astronomy, University of Louisville, Louisville, KY, 40208, USA
| |
Collapse
|
3
|
Chaber P, Tylko G, Włodarczyk J, Nitschke P, Hercog A, Jurczyk S, Rech J, Kubacki J, Adamus G. Surface Modification of PHBV Fibrous Scaffold via Lithium Borohydride Reduction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7494. [PMID: 36363086 PMCID: PMC9653721 DOI: 10.3390/ma15217494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
In this study, lithium borohydride (LiBH4) reduction was used to modify the surface chemistry of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibers. Although the most common reaction employed in the surface treatment of polyester materials is hydrolysis, it is not suitable for fiber modification of bacterial polyesters, which are highly resistant to this type of reaction. The use of LiBH4 allowed the formation of surface hydroxyl groups under very mild conditions, which was crucial for maintaining the fibers' integrity. The presence of these groups resulted in a noticeable improvement in the surface hydrophilicity of PHBV, as revealed by contact angle measurements. After the treatment with a LiBH4 solution, the electrospun PHBV fibrous mat had a significantly greater number of viable osteoblast-like cells (SaOS-2 cell line) than the untreated mat. Moreover, the results of the cell proliferation measurements correlated well with the observed cell morphology. The most flattened SaOS-2 cells were found on the surface that supported the best cell attachment. Most importantly, the results of our study indicated that the degree of surface modification could be controlled by changing the degradation time and concentration of the borohydride solution. This was of great importance since it allowed optimization of the surface properties to achieve the highest cell-proliferation capacity.
Collapse
Affiliation(s)
- Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Jakub Włodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Paweł Nitschke
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Anna Hercog
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Sebastian Jurczyk
- Institute for Engineering of Polymer Materials and Dyes, Łukasiewicz Research Network, Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
| | - Jakub Rech
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Jerzy Kubacki
- Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
4
|
Biochip Surfaces Containing Recombinant Cell-Binding Domains of Fibronectin. COATINGS 2022. [DOI: 10.3390/coatings12070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface immobilization and characterization of the functional activity of fibronectin (Fn) type-III domains are reported. The domains FnIII9-10 or FnIII10 containing the RGD loop and PHSRN synergy site were recombinantly produced and covalently bound to chemically activated PEG methacrylate (MA) hydrogel coatings by microcontact printing. Such fabricated biochip surfaces were 6 mm in diameter and consisted of 190 µm wide protein stripes separated by 200 µm spacing. They were analyzed by imaging null ellipsometry, atomic force microscopy and fluorescence microscopy. Also, the coatings were tested in human foreskin fibroblast and HeLa cultures for at least 96 h, thus evaluating their suitability for controlled cell adhesion and proliferation. However, while HeLa cultures were equally well responsive to the FnIII9-10, FnIII10 and Fn surfaces, the fibroblasts displayed lower cell and lower focal adhesion areas, as well as lower proliferation rates on the Fn fragment surfaces as compared to Fn. Nevertheless, full functional activity of the fibroblasts was confirmed by immunostaining of Fn produced by the cells adherent on the biochip surfaces. The observed interaction differences that were either cell type or surface composition-dependent demonstrate the potential use of specifically engineered Fn and other ECM protein-derived domains in biochip architectures.
Collapse
|
5
|
Muzzio N, Moya S, Romero G. Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:792. [PMID: 34073311 PMCID: PMC8230126 DOI: 10.3390/pharmaceutics13060792] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing demand for organ replacements in a growing world with an aging population as well as the loss of tissues and organs due to congenital defects, trauma and diseases has resulted in rapidly evolving new approaches for tissue engineering and regenerative medicine (TERM). The extracellular matrix (ECM) is a crucial component in tissues and organs that surrounds and acts as a physical environment for cells. Thus, ECM has become a model guide for the design and fabrication of scaffolds and biomaterials in TERM. However, the fabrication of a tissue/organ replacement or its regeneration is a very complex process and often requires the combination of several strategies such as the development of scaffolds with multiple functionalities and the simultaneous delivery of growth factors, biochemical signals, cells, genes, immunomodulatory agents, and external stimuli. Although the development of multifunctional scaffolds and biomaterials is one of the most studied approaches for TERM, all these strategies can be combined among them to develop novel synergistic approaches for tissue regeneration. In this review we discuss recent advances in which multifunctional scaffolds alone or combined with other strategies have been employed for TERM purposes.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| |
Collapse
|